MAAP-008924

Amplifier, Power, 1.2 W
10 - 13.3 GHz

Features
- OIP3: 44 dBm
- Gain: 20 dB
- P1dB: 31 dB
- Lead-Free 5 mm 20-lead PQFN Package
- Halogen-Free “Green” Mold Compound
- RoHS* Compliant and 260°C Reflow Compatible
- Class 1C ESD Rating

Description
The MAAP-008924 is a 3-stage, high linearity 1.2 W GaAs power amplifier in a 5mm, 20 lead PQFN package, allowing easy assembly. This PA product is fully matched to 50 ohms on both the input and output. It can be used as a power amplifier stage or as a driver stage in high power applications. It is ideally suited for Point-to-Point Radios.

Each device is 100% RF tested to ensure performance compliance. The part is fabricated using M/A-COM Technology Solutions’ high linearity MESFET Process.

Ordering Information ¹

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAP-008924-TR0500</td>
<td>500 piece reel</td>
</tr>
<tr>
<td>MAAP-008924-TR1000</td>
<td>1000 piece reel</td>
</tr>
<tr>
<td>MAAP-008924-001SMB</td>
<td>Sample Board</td>
</tr>
</tbody>
</table>

¹ Reference Application Note M513 for reel size information.

Functional Schematic

Pin Configuration ²,³

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Function</th>
<th>Pin No.</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No Connect</td>
<td>11</td>
<td>No Connect</td>
</tr>
<tr>
<td>2</td>
<td>No Connect</td>
<td>12</td>
<td>No Connect</td>
</tr>
<tr>
<td>3</td>
<td>RF_IN</td>
<td>13</td>
<td>RF_OUT</td>
</tr>
<tr>
<td>4</td>
<td>No Connect</td>
<td>14</td>
<td>No Connect</td>
</tr>
<tr>
<td>5</td>
<td>No Connect</td>
<td>15</td>
<td>No Connect</td>
</tr>
<tr>
<td>6</td>
<td>V_G1</td>
<td>16</td>
<td>V_D3</td>
</tr>
<tr>
<td>7</td>
<td>No Connect</td>
<td>17</td>
<td>No Connect</td>
</tr>
<tr>
<td>8</td>
<td>V_G2</td>
<td>18</td>
<td>V_D2</td>
</tr>
<tr>
<td>9</td>
<td>No Connect</td>
<td>19</td>
<td>No Connect</td>
</tr>
<tr>
<td>10</td>
<td>V_G3</td>
<td>20</td>
<td>V_D1</td>
</tr>
</tbody>
</table>

² M/A-COM Technology Solutions recommends connecting unused package pins to ground.
³ The exposed pad centered on the package bottom must be connected to RF and DC ground.

Amplifier, Power, 1.2 W

10 - 13.3 GHz

Electrical Specifications: Freq. 10 - 13.3 GHz, $V_{DD} = 6$ V, $I_{DQ} = 1000$ mA4, $Z_0 = 50$ Ω

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Signal Gain</td>
<td>10 GHz</td>
<td>dB</td>
<td>—</td>
<td>21</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>11.7 GHz</td>
<td></td>
<td>—</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>13.3 GHz</td>
<td></td>
<td>20</td>
<td>22</td>
<td>—</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>—</td>
<td>dB</td>
<td>—</td>
<td>12</td>
<td>—</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>—</td>
<td>dB</td>
<td>—</td>
<td>10</td>
<td>—</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>—</td>
<td>dB</td>
<td>—</td>
<td>7</td>
<td>—</td>
</tr>
<tr>
<td>P1dB</td>
<td>10 GHz, @ 15 dBm / tone</td>
<td>dBm</td>
<td>—</td>
<td>31</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>11.7 GHz, @ 15 dBm / tone</td>
<td></td>
<td>—</td>
<td>42</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>13.3 GHz, @ 15 dBm / tone</td>
<td></td>
<td>39</td>
<td>44</td>
<td>—</td>
</tr>
<tr>
<td>OIP3</td>
<td>10 GHz, @ 15 dBm / tone</td>
<td>dBm</td>
<td>—</td>
<td>41</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>11.7 GHz, @ 15 dBm / tone</td>
<td></td>
<td>—</td>
<td>44</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>13.3 GHz, @ 15 dBm / tone</td>
<td></td>
<td>—</td>
<td>41</td>
<td>—</td>
</tr>
<tr>
<td>P_{SAT}</td>
<td>—</td>
<td>dBm</td>
<td>—</td>
<td>32</td>
<td>—</td>
</tr>
<tr>
<td>Current, $P_{OUT} = 31$ dBm</td>
<td>I_{DD}</td>
<td>mA</td>
<td>—</td>
<td>1100</td>
<td>—</td>
</tr>
</tbody>
</table>

4. Set V_{GG} to −1.5 V prior to applying V_{DD}, once V_{DD} is applied adjust V_{GG} to achieve specific I_{DQ}.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these class 1C devices.

5. Exceeding any one or combination of these limits may cause permanent damage to this device.

6. M/A-COM Technology Solutions does not recommend sustained operation near these survivability limits.

7. Operating at nominal conditions with $T_J \leq +150°C$ will ensure $MTTF > 1 \times 10^6$ hours.

8. Junction Temperature (T_J) = $T_C + \Theta_{jc} * ((V * I) - (P_{OUT} - P_{IN}))$

 Typical thermal resistance (Θ_{jc}) = 9.1°C/W.

a) For $T_C = 25°C$,

 $T_J = 74°C \div 6$ V, 1100 mA, $P_{OUT} = 31$ dBm, $P_{IN} = 11$ dBm

b) For $T_C = 85°C$,

 $T_J = 134°C \div 6$ V, 1100 mA, $P_{OUT} = 31$ dBm, $P_{IN} = 11$ dBm

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.
Amplifier, Power, 1.2 W
10 - 13.3 GHz

Typical Performance Curves

Gain

S21 (dB)

[S21 graph with frequency (GHz) from 10.0 to 13.5 and gain values from 10 to 30 dB for different temperatures (+25 C, -40 C, +85 C).]

Input Return Loss

S11 (dB)

[S11 graph with frequency (GHz) from 10.0 to 13.5 and return loss values from -10 to 0 dB for different temperatures (+25 C, -40 C, +85 C).]

Output Return Loss

S22 (dB)

[S22 graph with frequency (GHz) from 10.0 to 13.5 and return loss values from 0 to -35 dB for different temperatures (+25 C, -40 C, +85 C).]

Noise Figure

[Noise Figure graph with frequency (GHz) from 10.0 to 13.5 and noise figure values from 1 to 9 dB for different temperatures (+25 C, -40 C, +85 C).]

P1dB

[P1dB graph with frequency (GHz) from 10.0 to 13.5 and P1dB values from 25 to 35 dBm for different temperatures (+25 C, -40 C, +85 C).]

Output IP3 @ 10 GHz

[Output IP3 graph with frequency (GHz) from 10.0 to 13.5 and IP3 values from 28 to 60 dBm for different temperatures (+25 C, -40 C, +85 C).]

For further information and support please visit: https://www.macom.com/support
Typical Performance Curves (cont.)

Output IP3 @ 11.7 GHz

![Graph showing Output IP3 @ 11.7 GHz for different temperatures.]

Output IP3 @ 13.3 GHz

![Graph showing Output IP3 @ 13.3 GHz for different temperatures.]

Lead-Free 5 mm 20-Lead PQFN†

![Diagram of Lead-Free 5 mm 20-Lead PQFN package.]

NOTES:
1. Reference JEDEC M0-220, VAR VHHC for additional dimensions and tolerance information.
2. Reference S2083 application note for PCB footprint information.
3. All dimensions shown as inches/mm.

† Reference Application Note S2083 for lead-free solder reflow recommendations.

Meets JEDEC moisture sensitivity level 1 requirements.
Plating is 100% matte tin over copper.