Features
- 18 dB Gain
- ±0.5 dB Broadband Gain Flatness
- 10 V Bias
- DC Decoupled RF Input and Output

Description
The MAAM28000 is a wide band, MMIC amplifier. It includes two distributed gain stages to obtain flat gain and a good, 50 Ω input and output impedance match over a very wide bandwidth. The MAAM28000 operates from a single 10 V supply.

The MAAM28000 performs well as a generic IF, driver or buffer amplifier where high gain, excellent linearity and low power consumption are important. Because of its wide bandwidth, the MAAM28000 is ideally suited for use in numerous commercial and government system applications, such as satellite communications, RLL, EW and radar.

The MAAM28000 is manufactured in-house using a reliable, 0.5-micron, GaAs MESFET process. This product is 100% RF tested to ensure compliance to performance specifications.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAM28000</td>
<td>Die</td>
</tr>
</tbody>
</table>
Wide Band GaAs MMIC Amplifier
2 - 8 GHz

Electrical Specifications:
$T_A = 25^\circ C$, $Z_0 = 50 \, \Omega$, $V_{DD} = +10 \, VDC$, $I_{DD} = 60 \, mA$ typical, 100 mA maximum

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain1</td>
<td></td>
<td>dB</td>
<td>16</td>
<td>18</td>
<td>—</td>
</tr>
<tr>
<td>Gain Flatness</td>
<td></td>
<td>dB</td>
<td>—</td>
<td>± 0.5</td>
<td>—</td>
</tr>
<tr>
<td>Noise Figure1</td>
<td>2 - 4 GHz</td>
<td>dB</td>
<td>6.0</td>
<td>4.5</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>4 - 6 GHz</td>
<td>dB</td>
<td>4.5</td>
<td>6.0</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>6 - 8 GHz</td>
<td>dB</td>
<td>4.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>VSWR</td>
<td>Input</td>
<td>Ratio</td>
<td>—</td>
<td>1.7:1</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Output</td>
<td></td>
<td></td>
<td>1.3:1</td>
<td>—</td>
</tr>
<tr>
<td>Output Power</td>
<td>@ 1 dB Gain Compression</td>
<td>dBm</td>
<td>—</td>
<td>14</td>
<td>—</td>
</tr>
<tr>
<td>Third Order Intercept</td>
<td></td>
<td>dBm</td>
<td>—</td>
<td>24</td>
<td>—</td>
</tr>
<tr>
<td>Reverse Isolation</td>
<td></td>
<td>dB</td>
<td>—</td>
<td>40</td>
<td>—</td>
</tr>
<tr>
<td>Impedance</td>
<td></td>
<td>(\Omega)</td>
<td>—</td>
<td>50</td>
<td>—</td>
</tr>
</tbody>
</table>

1. 100% on-wafer tested.

Absolute Maximum Ratings2,3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>14 V</td>
</tr>
<tr>
<td>Input Power</td>
<td>20 dBm</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-55°C to +125°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
</tbody>
</table>

2. Exceeding any one or combination of these limits may cause permanent damage to this device.
3. MACOM does not recommend sustained operation near these survivability limits.

Typical Bias Configuration4,5

4. Nominal bias is obtained with on-chip resistors by grounding pads S1a and S2a.
5. Optional biasing can be obtained with off-chip resistors bonded from pads S1b and S2b to ground. Adjusting the bias can customize the performance to suit special requirements.
Typical Performance Curves

Gain

![Gain Graph](image)

Noise Figure

![Noise Figure Graph](image)

VSWR

![VSWR Graph](image)
Handling Procedures
Permanent damage to the MAAM28000 may occur if the following precautions are not adhered to:

A. Cleanliness - The MAAM28000 should be handled in a clean environment. DO NOT attempt to clean assembly after installation.
B. Static Sensitivity - All die handling equipment and personnel should comply with DOD-STD-1686 Class I.
C. Transients - Avoid instrument and power supply transients while bias is connected to the MAAM28000. Use shielded signal and bias cables to minimize inductive pick-up.
D. General Handling - DO NOT touch the surface of the die. It is recommended that the MAAM28000 die be handled along the long side with a sharp pair of tweezers.

Mounting
The MAAM28000 is back-metalized with Pd/Ni/Au (100/1, 000/30,000Å) metallization. It can be die-mounted using Au/Sn eutectic preforms or a thermally and electrically conductive epoxy. The attachment surface should be clean and flat.

Eutectic Die Attach:
A. An 80/20 Au/Sn preform is recommended with a work surface temperature of approximately 255°C and a tool temperature of 265°C. When hot 90/5 nitrogen/hydrogen gas is applied, solder temperature should be approximately 290°C.
B. DO NOT expose the MAAM28000 to a temperature greater than 320°C for more than 20 seconds. No more than 3 seconds of scrubbing should be required for attachment.

Epoxy Die Attach:
A. Electrically conductive epoxy is required.
B. Apply a minimum amount of epoxy and place the MAAM28000 into position. A thin epoxy fillet should be visible around the perimeter of the die.
C. Cure epoxy per manufacturer’s recommended schedule.

Bonding
A. Ball or wedge bond with 1.0 mil diameter gold wire of 3.0 mil x 0.5 mil ribbon. Thermosonic bonding with a nominal stage temperature of 150°C and a ball bonding force of 40 to 50 grams or wedge bonding force of 18 to 22 grams is recommended. Ultrasonic energy and time should be adjusted to the minimum levels necessary to achieve reliable bonds.
B. Bonds should be started on the die and terminated on the package.
C. Bonding pads are 4 x 4 mils minimum.

Outline Drawing
Wide Band GaAs MMIC Amplifier

2 - 8 GHz

Rev. V8

MAAM28000

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.