

MAAM-011361 Rev. V1

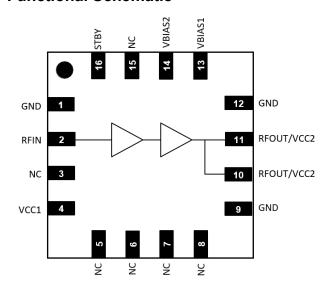
Features

- 2-Stage Driver Amplifier with Simple Bias Control Circuit
- 3.0 4.4 GHz Wideband Operation Frequency
- No External Matching Components Required
- Gain: 35 dB
- Low Quiescent Current: 160 mA
- Output P1dB: 26 dBm
 Output P3dB: 27 dBm
 Output IP3: 40 dBm
 Noise Figure: 4.0 dB
- Single Supply Voltage: 5 VLogic Voltage: 1.8 or 3.3 V
- Lead-Free 3 mm 16 Lead SMT Package
- RoHS* Compliant

Applications

- 5G Massive MIMO
- Small Cell BTS
- Wireless Infrastructure
- Multi Market

Description


The MAAM-011361 is a wideband high linearity driver amplifier packaged in a compact 3 mm 16-Lead SMT package. This driver amplifier provides 35 dB gain, 26 dBm OP1dB, and 40 dBm OIP3 with 160 mA quiescent current and device ON/OFF function to support TDD system applications. RF input and output ports are internally matched over the entire operating frequency range of 3.0 - 4.4 GHz.

Ordering Information¹

Part Number	Package
MAAM-011361-TR1000	1000 piece reel
MAAM-011361-001SMB	Sample Board

1. Reference Application Note M513 for reel size information.

Functional Schematic

Pin Names

Pin #	Function
1, 9, 12	GND
2	RFIN
3, 5 - 8, 15	No connection ²
4	VCC1
10, 11	RFOUT/VCC2
13	VBIAS1
14	VBIAS2
16	STBY
17	Paddle ³

- 2. MACOM recommends connecting No Connection (NC) pins to ground
- The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MAAM-011361 Rev. V1

Pin Description

Pin#	Name	Description
1, 9, 12	GND	These pins are grounded internally.
2	RFIN	RF input. Internally DC blocked.
3, 6 - 8, 15	NC	No connection. Can be connected to ground. Not connected internally.
4	VCC1	DC supply voltage. Place bypass capacitor as close to pin as possible.
5	NC	No connection. Can be connected to ground. Grounded internally.
10, 11	RFOUT/ VCC2	RF output. DC bias current is injected though these two pins. Supply voltage through a choke coil. DC-blocking capacitor is required following the choke coil. Place bypass capacitor as close to the choke coil as possible.
13	VBIAS1	DC supply voltage for Bias Circuit. Place bypass capacitor as close to pin as possible. VBIAS1 should be connected to VCC1 and VCC2 single supply.
14	VBIAS2	No connection. Leave open (floating).
16	STBY	Supply amplifier ON/OFF logic control voltage.
17	Paddle	Must be connected to RF, DC, and thermal ground. This pin is grounded internally.

MAAM-011361 Rev. V1

AC Electrical Specifications:

Freq. = 3.8 GHz, T_c^4 = +25°C, VCC1 = VCC2 = VBIAS1 = +5 V, Z_0 = 50 Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Gain	_	dB	32.5	35	_
Gain Flatness	Any 100 MHz	dB	_	0.1	_
Output P1dB	_	dBm	_	26	_
Output P3dB	_	dBm	_	27	_
Output IP3	P_{OUT} = +12 dBm / tone, Δf = 10 MHz	dBm	_	40	_
Input Return Loss	_	dB	_	12	_
Output Return Loss	_	dB	_	12	_
Noise Figure	_	dB	_	4.0	_
Power Consumption	Active state	W	_	0.8	_
Power Consumption	Standby state	W	_	0.005	_

^{4.} Tc is defined by exposed paddle temperature.

DC Electrical Specifications: $T_c^4 = +25$ °C, VCC1 = VCC2 = VBIAS1 = +5 V, $Z_0 = 50 \Omega$

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Standby to Active Mode Settling Time	RFIN to RFOUT gain settled within 0.1 dB of final value after STBY command	ns	_	300	
Active to Standby Mode Settling Time	RFIN to RFOUT signal reduced at least 30 dB after STBY command	ns	_	300	
Supply Voltage ⁵	VCC1, RFOUT/VCC2, VBIAS1	V	4.75	5	5.25
Supply Current ⁵	VCC1, RFOUT/VCC2, VBIAS1	mA	_	160	
Logic Control Voltage	Logic High, STBY Logic Low, STBY	V	1.17 0	_	3.3 0.63
Logic input Current	Logic High/Low, STBY	μΑ	-10	_	10

^{5.} Connect VBIAS1, VCC1, and VCC2 to a single supply.

Truth Table

PIN	Device Control		
STBY	Logic High	Device Active Mode	
	Logic Low	Device Standby Mode	

MAAM-011361 Rev. V1

Recommended Operating Conditions

Parameter	Symbol	Unit	Min.	Тур.	Max.
DC Power Supply⁵	VCC1, VCC2, VBIAS1	V	4.75	5.0	5.25
Operating Temperature ⁴	T _c	°C	-40	_	105
Junction Temperature ^{6,7}	TJ	°C	_	_	150

^{6.} Operating at nominal conditions with $T_J \le +150$ °C will ensure MTTF > 1 x 10^6 hours.

Absolute Maximum Ratings^{8,9}

Parameter	Symbol	Unit	Min.	Max.
Input Power	RFIN	dBm	_	20
DC Supply Voltage ⁵	VCC1, VCC2, VBIAS1	V	-0.5	5.5
Logic Control Voltage	STBY	V	-0.5	3.6
Operating Temperature ⁴	T _c	°C	-40	125
Storage Temperature ⁴	T _c	°C	-65	150

^{8.} Exceeding any one or combination of these limits may cause permanent damage to this device.

Handling Procedures

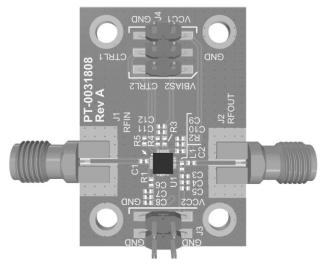
Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1B and CDM Class C3 devices.

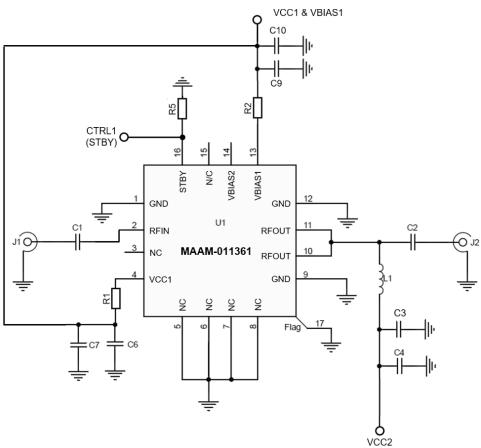
Junction Temperature (TJ) = TC + ΘJC * PDISS where PDISS is the total DC & RF dissipated power. Typical thermal resistance (ΘJC) = 47 °C/W.

a) For T_C = +25°C, T_J = 63 °C @ 5 V b) For T_C = +105°C, T_J = 150 °C @ 5 V


^{9.} MACOM does not recommend sustained operation near these survivability limits.

MAAM-011361

Rev. V1


PCB Layout

Parts List

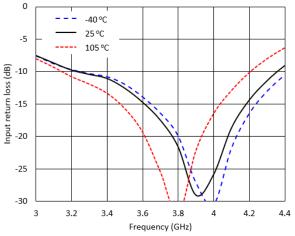
Part	Value	Case Style
C1	1 pF	0402
C2	2 pF	0402
C3, C6, C9	100 pF	0402
C4, C7, C10	1 μF	0402
L1	12 nH	0402
R1, R2	0 Ω	0402
R5	1 kΩ	0402

Application Schematic¹⁰

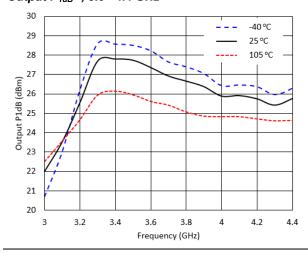
10. Connect VBIAS1, VCC1, and VCC2 pins to a single +5 V supply. Connect CTRL1 pin to 0 V / 1.8 V Logic pin for STBY control. Leave VBIAS2 and CTRL2 pins open (floating).

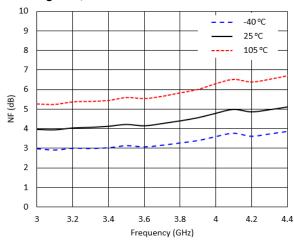
5

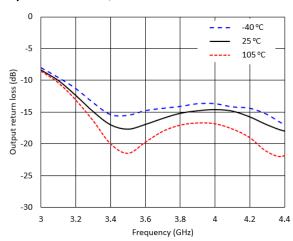
MAAM-011361 Rev. V1


Typical Performance Curve

P_{IN} = -30 dBm, VCC1 = VCC2 = VBIAS1 = +5 V, Z_0 = 50 Ω (unless otherwise stated)


Gain¹¹, 3.0 - 4.4 GHz

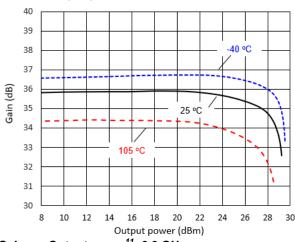

Input Return Loss, 3.0 - 4.4 GHz


Output P_{1dB}¹¹, 3.0 - 4.4 GHz

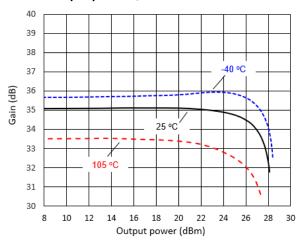
Noise Figure¹¹, 3.0 - 4.4 GHz

Output Return Loss, 3.0 - 4.4 GHz

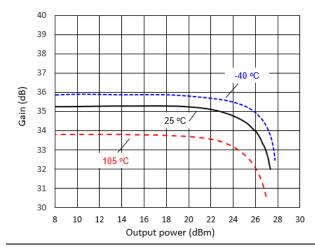
11.For Gain, Noise Figure, and Output P1_{dB} plots, RF trace and connector losses are de-embedded.

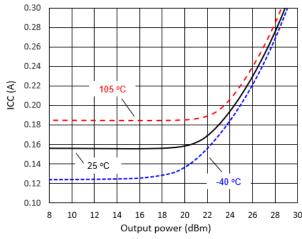


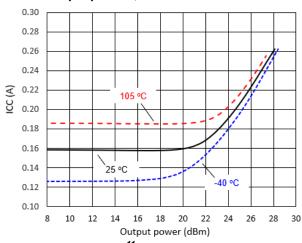
MAAM-011361 Rev. V1

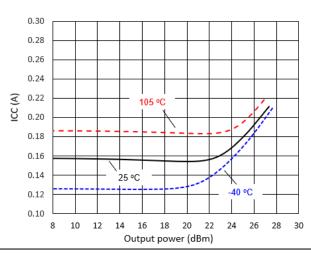

Typical Performance Curve

VCC1 = VCC2 = VBIAS1 = +5 V, Z_0 = 50 Ω (unless otherwise stated)


Gain vs. Output power¹¹, 3.3 GHz


Gain vs. Output power¹¹, 3.8 GHz


Gain vs. Output power¹¹, 4.2 GHz

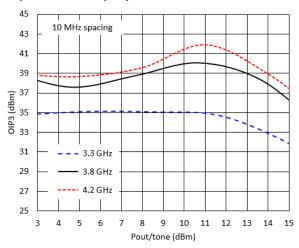

ICC vs. Output power¹¹, 3.3 GHz

ICC vs. Output power¹¹, 3.8 GHz

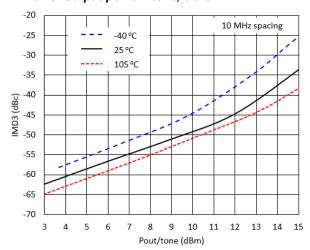
ICC vs. Output power¹¹, 4.2 GHz

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

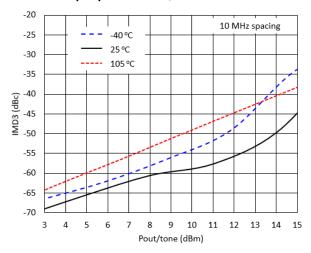
Visit www.macom.com for additional data sheets and product information.

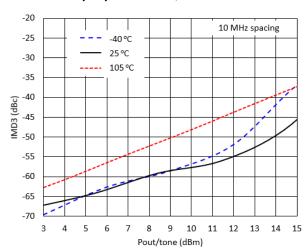


MAAM-011361 Rev. V1

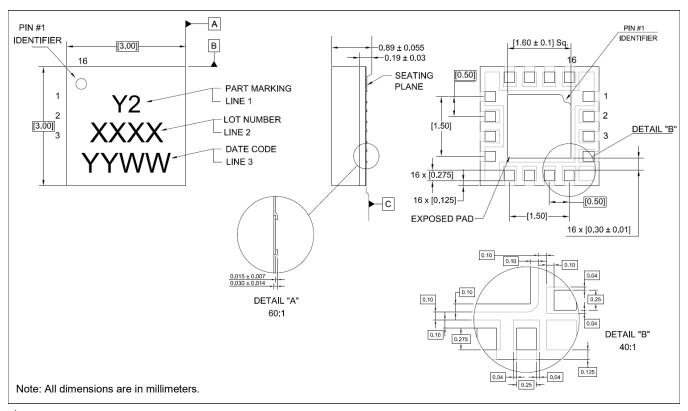

Typical Performance Curve

VCC1 = VCC2 = VBIAS1 = +5 V, Z_0 = 50 Ω (unless otherwise stated)


Output IP3 vs. Output power / tone, +25 °C


IMD3 vs. Output power / tone, 3.3 GHz

IMD3 vs. Output power / tone, 3.8 GHz


IMD3 vs. Output power / tone, 4.2 GHz

MAAM-011361 Rev. V1

Lead-Free 3 mm 16-Lead SMT[†]

Reference Application Note S2083 for lead-free solder reflow recommendations.

Meets JEDEC moisture sensitivity level 3 requirements in accordance to JEDEC J-STD-020D.

Plating is NiPdAu over copper

Revision History

Rev	Date	Change Description
V1	12/21/23	Initial release.

MAAM-011361 Rev. V1

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.