

Rev. V1

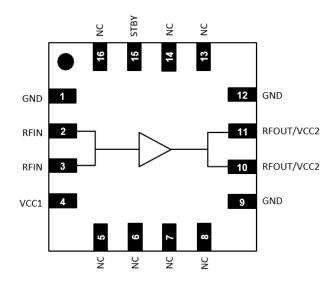
Features

- Driver Amplifier with Simple Bias Control Circuit
- Operation Frequency: 3.0 4.4 GHz
- No External Matching Components Required
- Gain: 17 dB
- Output P1dB: 25 dBmOutput P3dB: 27 dBmOutput IP3: 39 dBm
- Single Supply Voltage: 5 VEnable Logic Voltage: 1.8 V
- Lead-Free 3 mm 16 Lead SMT Package
- RoHS* Compliant

Applications

- 5G Massive MIMO
- Small Cell BTS
- · Wireless Infrastructure
- Multi Market

Description


The MAAM-011323 is a wideband high linearity driver amplifier packaged in a compact 3 mm 16-Lead SMT package. This driver amplifier provides 17 dB gain and 25 dBm OP1dB with device ON/OFF function to support TDD system application. RF input and output ports are internally matched over the entire operating frequency range of 3.0 - 4.4 GHz.

Ordering Information¹

Part Number	Package
MAAM-011323-TR1000	1000 piece reel
MAAM-011323-001SMB	Sample Board

1. Reference Application Note M513 for reel size information.

Functional Schematic

Pin Names²

Pin#	Function	
1, 9, 12	Ground	
2, 3	RF Input	
4	DC Supply Voltage	
5 - 8, 13 - 14, 16	No Connection ²	
10, 11	RF Output / DC Supply Voltage	
15	Enable Logic Pin	
17	Paddle ³	

- 2. MACOM recommends connecting No Connection (N/C) pins to ground
- The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Driver Amplifier 3.0 - 4.4 GHz

MAAM-011323

Rev. V1

Pin Description

Pin#	Name	Description
1, 9, 12	GND	This pin is grounded internally.
2-3	RFIN	This pin is dc grounded with shunt matching inductor. A DC-blocking capacitor is required on this pin.
4	VCC1	Supply Voltage. Place bypass capacitor as close to pin as possible.
5-8, 13-14, 16	NC	Not connected internally.
10-11	RFOUT/ VCC2	Supply Voltage through a choke coil. DC-blocking capacitor is required following the choke coil. Place bypass capacitor as close to the choke coil as possible.
15	STBY	Supply amplifier ON/OFF logic control voltage.
17	Paddle	Must be connected to RF, DC, and thermal ground. This pin is grounded internally.

MAAM-011323 Rev. V1

AC Electrical Specifications: Freq. = 3.5 GHz, T_A = +25°C, VCC1 = VCC2 = +5 V, Z_0 = 50 Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Gain	3.3 GHz 3.5 GHz 4.2 GHz	dB	15.0 —	17.5 17.0 16.5	_
Gain Flatness	3.0 - 4.4 GHz, Any 800 MHz	dB	_	1.0	_
Output P1dB	3.0 - 4.4 GHz	dBm	_	25	_
Output IP3	3.5 GHz, Δf = 10 MHz, Pout / tone = +12 dBm	dBm	_	39	_
Raw Linearity (ACPR)	LTE 5 MHz, PAPR = 9.9 dB, Pout = +15 dBm	dBc	_	-50	_
Input Return Loss	3.0 - 4.4 GHz	dB	_	8	_
Output Return Loss	3.0 - 4.4 GHz	dB	_	14	_
Noise Figure	3.0 - 4.4 GHz	dB	_	3.5	_
Power Consumption	VCC1, RFOUT/VCC2, Active state	W	_	0.58	_
Power Consumption	VCC1, RFOUT/VCC2, Standby state	W	_	0.01	_

DC Electrical Specifications: VCC1 = VCC2 = +5 V

Parameter Test Conditions		Units	Min.	Тур.	Max.
Standby to Active Mode Settling Time	RFIN to RFOUT gain settled within 0.1 dB of final value after STBY command	ns	_	300	_
Active to Standby Mode Settling Time RFIN to RFOUT signal reduced at least 30 dB after STBY command		ns	_	300	_
Supply Voltage	VCC1, VCC2	V	4.75	5	5.25
Supply Current	VCC1, RFOUT/VCC2	mA	_	116	_
Logic Control Voltage	Logic High, STBY Logic Low, STBY	V	1.17 0	_	3.3 0.63
Logic input Current	Logic High/Low, STBY	mA	-10	_	10

Truth Table

PIN	Device Control		
STBY	Logic High	Device Active Mode	
	Logic Low	Device Standby mode	

Rev. V1

Recommended Operating Conditions

Parameter	Symbol	Unit	Min.	Тур.	Max.
DC Power Supply	VCC1, VCC2	V	4.75	5.0	5.25
Operating Temperature ⁴	T _c	°C	-40	_	110
Junction Temperature ^{5,6}	TJ	°C	_	_	150

4. Tc is defined by exposed paddle temperature.

Absolute Maximum Ratings^{7,8}

Parameter	Symbol	Unit	Min.	Max.
Input Power	RFIN	dBm	_	26
DC Supply Voltage	VCC1, VCC2	V	-0.5	6.0
Logic Control Voltage	STBY	V	-0.5	3.6
Functional Temperature ⁴	T _c	°C	-40	125
Storage Temperature⁴	T _c	°C	-65	150

^{7.} Exceeding any one or combination of these limits may cause permanent damage to this device.

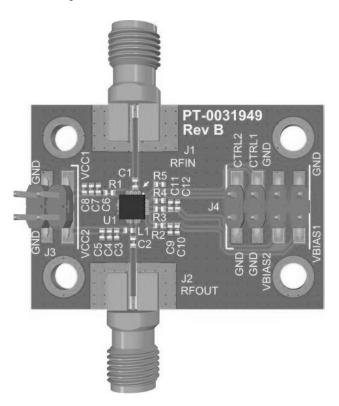
Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

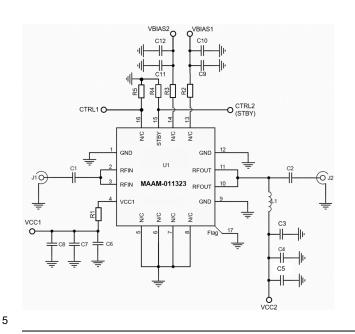
electronic devices are sensitive electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Parameter	Rating	Standard
Human Body	1000 V	ESDA/JEDEC
Model (HBM)	(Class 1C)	JS-001
Charged Device	1000 V	ESDA/JEDEC
Model (CDM)	(Class C3)	JS-002


^{5.} Operating at nominal conditions with T_J ≤ +150 °C will ensure MTTF > 1 x 10⁶ hours.
6. Junction Temperature (T_J) = T_C + Θ_JC * (V * I). Typical thermal resistance (Θ_JC) = 59.0 °C/W. a) For T_C = +25°C, T_J = 57.4 °C @ 5 V, 110 mA
b) For T_C = +110°C, T_J = 148.3 °C @ 5 V,130 mA

^{8.} MACOM does not recommend sustained operation near these survivability limits.

Rev. V1


PCB Layout


Parts List

Part	Value	Case Style
C1, C2	24 pF	0402
C3, C6	100 pF	0402
C4, C7	1 µF	0402
C5, C8 - C12	DNP	-
L1	6.8 nH	0402
R1	0 Ω	0402
R2 - R3, R5	DNP	_
R4	1 kΩ	0402
J1 - J2	142-0761-841	SMA, End Launch

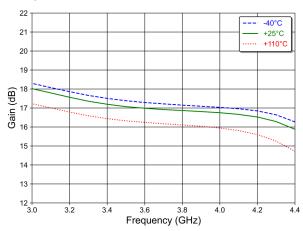
Application Schematic

Recommended Thermal Land Pattern

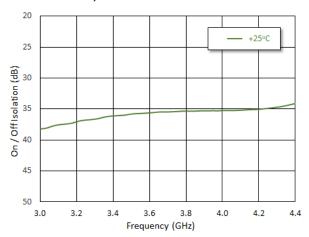
- 13 Ground Vias
- 0.2 mm Diameter, 1/2 oz. Copper

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

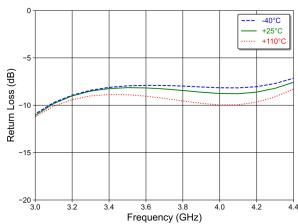
Visit www.macom.com for additional data sheets and product information.

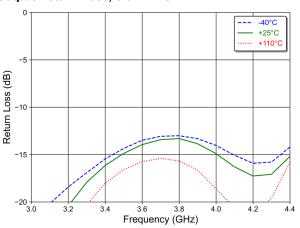


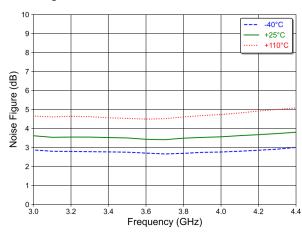
Rev. V1

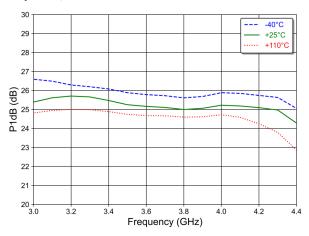

Typical Performance Curves

P_{IN} = -20 dBm, VCC1 = VCC2 = +5 V, Z_0 = 50 Ω (unless otherwise stated)


Gain⁹, 3.0 - 4.4 GHz

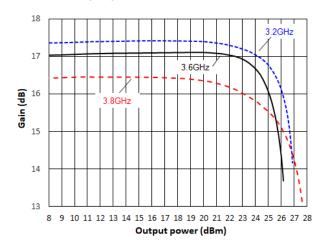

On/Off Isolation, 3.0 - 4.4 GHz

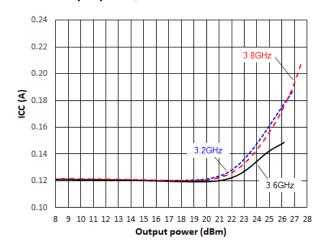

Input Return Loss, 3.0 - 4.4 GHz


Output Return Loss, 3.0 - 4.4 GHz

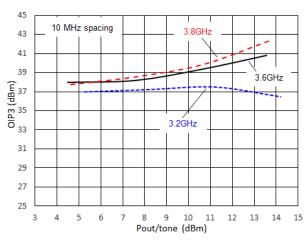
Noise Figure⁹, 3.0 - 4.4 GHz

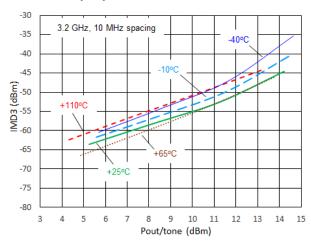
Output P_{1dB}^{9} , 3.0 - 4.4 GHz

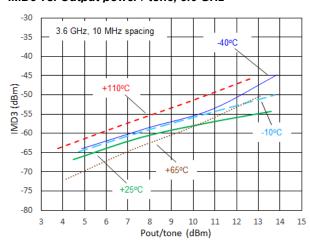

9. For Gain, Noise Figure, and Output $P1_{dB}$ plots, RF trace and connector losses are de-embedded .

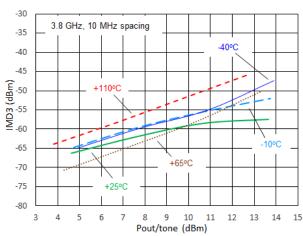

Rev. V

Typical Performance Curves: VCC1 = VCC2 = +5 V, Z_0 = 50 Ω (unless otherwise stated)


Gain⁹ vs. Output power, +25 °C


ICC vs. Output power, +25 °C

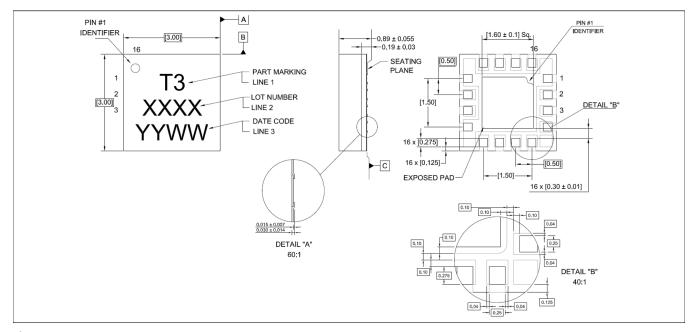

Output IP3 vs. Output power / tone, +25 °C


IMD3 vs. Output power / tone, 3.2 GHz

IMD3 vs. Output power / tone, 3.6 GHz

IMD3 vs. Output power / tone, 3.8 GHz

7


MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

Rev. V1

Lead-Free 3 mm 16-Lead SMT[†]

[†] Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level (MSL) 3 requirements. Plating is NiPbAu over copper.

Revision History

Rev	Date	Change Description
V1	9/25/23	First release

Driver Amplifier 3.0 - 4.4 GHz

MAAM-011323

Rev. V1

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.