

Rev. V1

Features

Gain: 20 dB

Saturated Power: 20.5 dBm

• Output IP3: 32 dBm

High Reverse Isolation: 48 dB
50 Ω Matched Input and Output

· Integrated Capacitors on RF Input and Output

• +5 V Supply @ 107 mA

• Die Size 1.42 × 0.80 × 0.10 mm

RoHS* Compliant

Applications

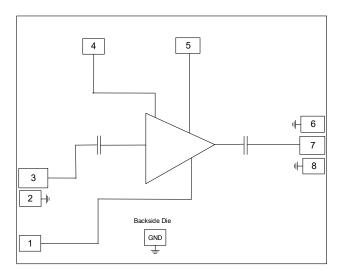
Microwave Radio

VSAT

Aerospace & Defense

Test and Measurement

Description


The MAAM-011290-DIE is a 5 - 20 GHz MMIC amplifier with 20 dB small signal gain, a P_{SAT} of 20.5 dBm and reverse isolation of 48 dB. This bare-die component requires only a single positive power supply.

All plotted data is taken with the chip connected via two 0.025 mm (1 mil) wire bonds of minimal length 0.31 mm (12 mils) on the RF $_{\rm IN}$ and RF $_{\rm OUT}$ ports.

Ordering Information

Part Number	Package
MAAM-011290-DIE	DIE in Gel Pack

Functional Schematic

Pad Configuration

Pad #	Function	Description
1	V _G	Gate Voltage Not Used
2, 6, 8	GND / NC	Ground / No Connection
3	RF _{IN}	RF Input
4	V _D 1	Drain Voltage 1
5	V _D 2	Drain Voltage 2
7	RF _{OUT}	RF Output
Paddle ¹	GND	Ground Paddle

^{1.} The backside of the die must be connected to RF, DC and thermal ground.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Driver Amplifier 5 - 20 GHz

MAAM-011290-DIE

Rev. V1

Electrical Specifications:

Freq. = 5 - $\dot{20}$ GHz, T_A = 25°C, V_{DD} = 5 V, Probed in a 50 Ω Environment

Parameter	Test Condition	Units	Min.	Тур.	Max.
Small Signal Gain	5 GHz 10 GHz 15 GHz 18 GHz 20 GHz	dB	18.0 19.5 — 16.5 —	20.0 21.5 20.0 18.5 17.5	_
Small Signal Gain Variation	_	dB	_	±2.5	_
Input Return Loss	_	dB	_	10	_
Output Return Loss	_	dB	_	13	_
P1dB	5 GHz 10 GHz 15 GHz 18 GHz 20 GHz	dBm	18.0 18.0 — 18.0 —	19.5 19.5 19.5 19.5 19.0	_
P _{SAT}	5 GHz 10 GHz 15 GHz 20 GHz	dBm	_	20.0 20.5 20.5 20.0	_
Output IP3	10 dBm P _{OUT} per Tone 5 GHz 10 GHz 15 GHz 20 GHz	dBm	_	32 29 28 30	_
Noise Figure	5 GHz 10 GHz 15 GHz 20 GHz	dB	_	4 4 4 5	
V _{DD} Drain Supply	_	V	_	5	_
Supply Current	_	mA	_	115	135

Rev. V1

Absolute Maximum Ratings^{2,3}

Parameter	Absolute Maximum
RF Power In	10 dBm
V _{DD} Supply Voltage	6 V
Supply Current	160 mA
Junction Temperature ^{4,5}	+150°C
Operating Temperature	-40°C to +85°C
Storage Temperature	-65°C to +165°C

- Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- 4. Operating at nominal conditions with $T_J \le +150^{\circ}C$ will ensure MTTF > 1 x 10^6 hours.
- Junction Temperature (T_J) = T_C + Θjc * (V * I)
 Typical thermal resistance (Θjc) = 64 °C/W.

a) For
$$T_C = +25^{\circ}C$$
,

T_J = 59°C @ 5 V, 107mA

b) For $T_{C} = +85^{\circ}C$,

T_J = 123°C @ 5 V, 120 mA

Operating Conditions

Recommended biasing conditions are $V_{D1,2}$ = 5 V and V_G = open circuit.

Simply perform the following for bias:

- 1. Set V_G = Open Circuit
- 2. Set $V_{D1,2} = 5 \text{ V}$

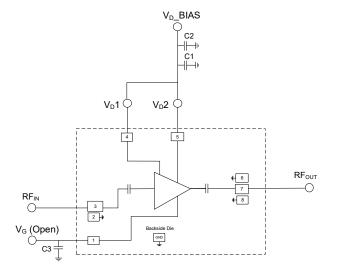
DC blocking is not required on the RF input or RF output since blocking capacitors are provided internally. Use 0.01 and 1 μF bypass capacitors on the $V_{\text{D1,2}}$ nodes and a 0.01 μF capacitor on the V_{G} node. Place the 0.01 μF bypass capacitors as close as possible to the chip.

Parts List

Part	Value	Case Style
C1, C3	0.01 μF	0402
C2	1 µF	0402

Maximum Operation Conditions

Parameter	Maximum
RF Power In	5 dBm
V _{DD} Supply Voltage	4 - 5 V
Supply Current	140 mA
Junction Temperature ^{4,5}	+150°C
Operating Temperature	-40°C to +85°C

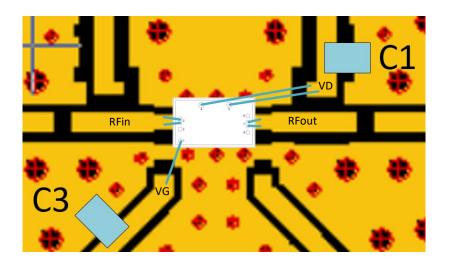

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these class 1B greater than 500 V HBM devices.

Application Schematic

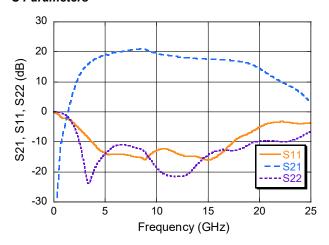


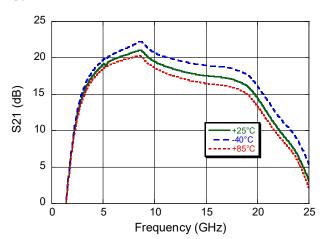
Rev. V1

Recommended Board Layout and Die Bonding Close Up

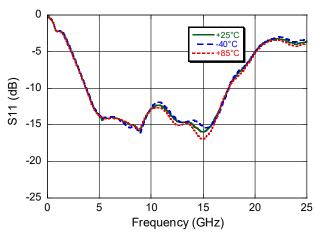
8 mils Rogers RO4003 with 1/2 oz. copper. Use conductive silver epoxy or AuSn eutectic for die attach and 1 mil diameter Au wire for wire bonding. Use copper filled and plated over vias under die for RF, DC and thermal grounding.

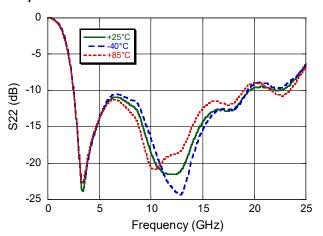
The s2p file downloadable from our website is directly probed to the die and does not include the effect of bond wires.

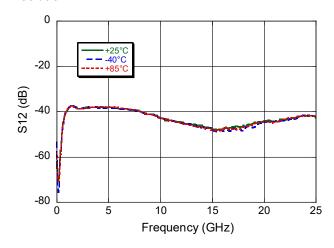



Rev. V1

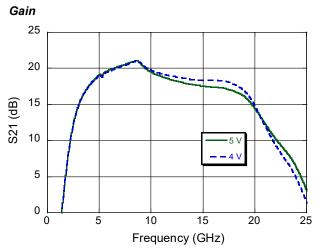
Typical Performance Curves V_D = 5 V^6 , (On Module with Bond-Wire Effects Included)

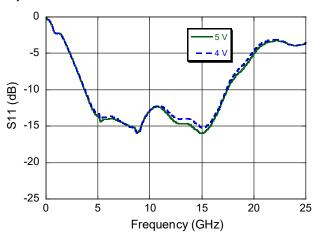

S Parameters


Gain

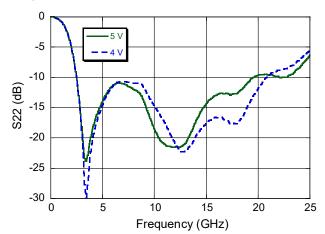

Input Return Loss

Output Return Loss


Isolation

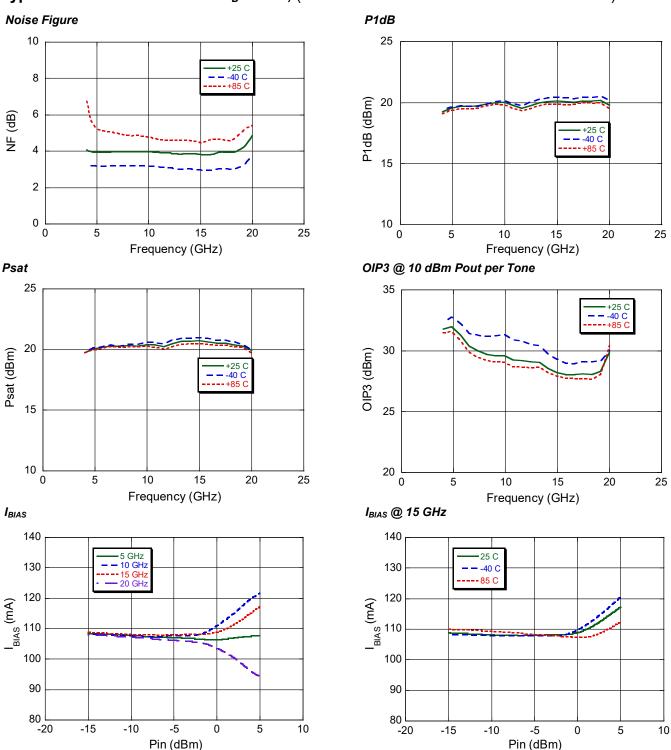

Rev. V

Typical Performance Curves $V_D = 4$ and 5 V^6 , (On Module with Bond-Wire Effects Included)



Input Return Loss

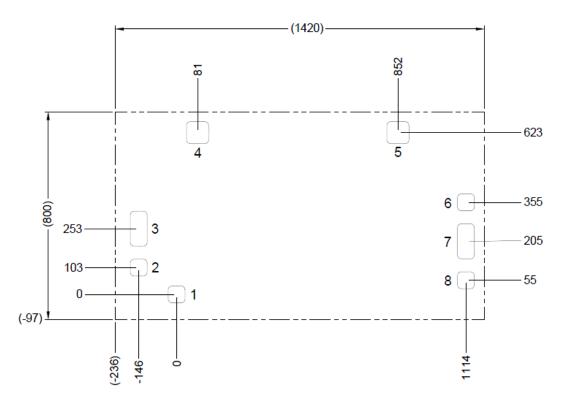
Output Return Loss



Frequency (GHz)

Rev. V1

Typical Performance Curves V_D = 5 V^6, (On Module with Bond-Wire Effects Included)



6. All plotted data is taken with the chip connected via two 0.025 mm (1 mil) wire bonds of minimal length 0.31 mm (12 mils) on the RF_{IN} and RF_{OUT} ports.

Rev. V1

MMIC Die Outline^{7,8,9,10}

- 7. All units in μm, unless otherwise noted, with a tolerance of ±5 μm.
- 8. Die thickness is 100 ±10 µm.
- 9. Bond pad and backside metallization: gold
- 10. Die size reflects un-cut dimensions. Saw or laser kerf reduces die size by ~25 μm each dimension.

Bond Pad Dimensions (µm)

Pad	Size (x)	Size (y)
1, 2, 6, 8	65	65
3, 7	65	135
4, 5	85	85

Driver Amplifier 5 - 20 GHz

MAAM-011290-DIE

Rev. V1

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.