Power Amplifier, 0.25 W
20 - 45 GHz

Features
- Wide Frequency Range: 20 - 45 GHz
- High Gain: 24.5 dB @ 39 GHz
- P1dB: 23.5 dBm @ 39 GHz
- Output IP3: 30 dBm
- Integrated Power Detector
- Bare Die
- RoHS* Compliant

Applications
- ISM/MM

Description
The MAAM-011277-DIE is a 4-stage, 0.25 W power amplifier 2.5 x 1.15 mm MMIC die. This power amplifier operates from 20 to 45 GHz and provides 22 dB of linear gain, 0.25 W at P1dB compression, and 17% efficiency (P3) while biased at 5 V.

This device can be used as a driver amplifier ideally suited for various operational band in between 20 GHz and 45 GHz.

This product is fabricated using a GaAs pHEMT process which features full passivation for enhanced reliability.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAM-011277-DIE</td>
<td>Bare Die</td>
</tr>
</tbody>
</table>

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Functional Schematic

Pin Configuration¹

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Pin Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IN</td>
<td>RF Input</td>
</tr>
<tr>
<td>2, 8</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>3, 13</td>
<td>VG</td>
<td>Gate Voltage</td>
</tr>
<tr>
<td>4, 10, 12</td>
<td>N/C</td>
<td>Not Connected</td>
</tr>
<tr>
<td>5, 11</td>
<td>VD</td>
<td>Drain Voltage</td>
</tr>
<tr>
<td>6</td>
<td>VDET_O</td>
<td>Detector Voltage</td>
</tr>
<tr>
<td>7</td>
<td>OUT</td>
<td>RF Output</td>
</tr>
<tr>
<td>9</td>
<td>VDET_R</td>
<td>Detector Reference</td>
</tr>
</tbody>
</table>

¹ Backside of die must be connected to RF, DC and thermal ground.

For further information and support please visit:
https://www.macom.com/support
Power Amplifier, 0.25 W
20 - 45 GHz

Electrical Specifications: Freq. = 20 - 45 GHz, $T_A = +25^\circ C$, $V_D = 5\, \text{V}$, $I_{DSQ} = 0.3\, \text{A}$, $Z_0 = 50\, \Omega$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>$P_{IN} = -10, \text{dBm}$</td>
<td>dB</td>
<td>21.0</td>
<td>24.0</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>20 GHz</td>
<td></td>
<td>18.5</td>
<td>20.0</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>30 GHz</td>
<td></td>
<td>21.5</td>
<td>24.5</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>39 GHz</td>
<td></td>
<td>—</td>
<td>18.5</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>45 GHz</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Input Return loss</td>
<td>—</td>
<td>dB</td>
<td>—</td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>—</td>
<td>dB</td>
<td>—</td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td>P_{1dB}</td>
<td>20 GHz</td>
<td>dBm</td>
<td>21.5</td>
<td>23.0</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>30 GHz</td>
<td></td>
<td>21.0</td>
<td>22.5</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>39 GHz</td>
<td></td>
<td>22.5</td>
<td>23.5</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>45 GHz</td>
<td></td>
<td>—</td>
<td>22.0</td>
<td>—</td>
</tr>
<tr>
<td>P_{3dB}</td>
<td>—</td>
<td>dBm</td>
<td>—</td>
<td>25</td>
<td>—</td>
</tr>
<tr>
<td>OIP3</td>
<td>$P_{OUT/Tone} = 18, \text{dBm}$</td>
<td>dBm</td>
<td>—</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>Drain Voltage</td>
<td>—</td>
<td>V</td>
<td>—</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>Drain Current @ P_{1dB}</td>
<td>—</td>
<td>mA</td>
<td>—</td>
<td>400</td>
<td>500</td>
</tr>
<tr>
<td>Power Added Efficiency</td>
<td>P_{3dB}</td>
<td>%</td>
<td>—</td>
<td>17</td>
<td>—</td>
</tr>
</tbody>
</table>

Maximum Operating Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>$P_{IN} \leq 3, \text{dB Compression}$</td>
</tr>
<tr>
<td>Junction Temperature2,3</td>
<td>$+160^\circ C$</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>$-40^\circ C$ to $+85^\circ C$</td>
</tr>
</tbody>
</table>

2. Operating at nominal conditions with junction temperature $\leq +160^\circ C$ will ensure $MTTF > 1 \times 10^6$ hours.
3. Junction Temperature (T_J) = $T_C + \Theta_{JC} \times (V \times I) - (P_{OUT} - P_{IN})$.
 a) For $T_C = +25^\circ C$
 $T_J = 56.2^\circ C$ @ 5 V, 443 mA, $P_{OUT} = 25.4\, \text{dBm}$, $P_{IN} = 4\, \text{dBm}$
 b) For $T_C = +85^\circ C$
 $T_J = 117.1^\circ C$ @ 5 V, 434 mA, $P_{OUT} = 24.0\, \text{dBm}$, $P_{IN} = 8\, \text{dBm}$

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronics devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these 250 V HBM Class 1A devices.
Power Amplifier, 0.25 W
20 - 45 GHz

Sample Board Layout

Application Schematic

Parts List

<table>
<thead>
<tr>
<th>Part</th>
<th>Value</th>
<th>Case Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 - C3</td>
<td>1 µF</td>
<td>0402</td>
</tr>
</tbody>
</table>

Sample Board Thru Loss
Refer to the plot on page 9 for sample board thru loss.

Sample Board Material Specifications
Top Layer: 1/2 oz Copper Cladding, 0.0175 mm thickness
Dielectric Layer: Rogers RO4003C 0.203 mm thickness
Bottom Layer: 1/2 oz Copper Cladding, 0.0175 mm thickness
Finished overall thickness: 0.238 mm
Recommended Bonding Diagram and PCB Details:
For optimum performance, RF input and output transmission lines require open stubs on the application board for bonding wire inductance compensation. The physical length for the 1 mil diameter gold wire is approximately 350 µm each for the two wire connection.

Use copper filled and plated over vias for the thermal, DC and RF ground vias.

Biasing Conditions
Recommended biasing conditions are $V_D = 5$ V, $I_{DB} = 300$ mA (controlled with V_G). The drain bias voltage range is 4 to 6 V, and the quiescent drain current biasing range is 250 to 350 mA.

V_G pins 3 and 11 are internally connected; therefore, interconnection is not required. Muting can be accomplished by setting the V_G to the pinched off voltage ($V_G = -2$ V).

V_D bias must be applied to V_{DN} and V_{DS} (north and south). North V_D supplies and south V_D supplies are not connected internally.

Operating the MAAM-011277-DIE

Turn-on
1. Apply V_G (-1.5 V).
2. Apply V_D (5.0 V typical).
3. Set I_{DB} by adjusting V_G more positive (typically -0.9 to -1.0 V for $I_{DB} = 300$ mA).
4. Apply RF_{IN} signal.

Turn-off
1. Remove RF_{IN} signal.
2. Decrease V_G to -1.5 V.
3. Decrease V_D to 0 V.
Power Amplifier, 0.25 W
20 - 45 GHz

Typical Performance Curves: $V_D = 5\, \text{V}, I_{DSQ} = 300\, \text{mA}$

Small Signal Gain vs. Frequency

[Graph showing S21 vs. Frequency for different temperatures and supply voltages]

Input Return Loss vs. Frequency

[Graph showing S11 vs. Frequency for different temperatures and supply voltages]

Output Return Loss vs. Frequency

[Graph showing S22 vs. Frequency for different temperatures and supply voltages]
Power Amplifier, 0.25 W
20 - 45 GHz

Typical Performance Curves: $V_D = 5$ V

Small Signal Gain vs. Frequency

Input Return Loss vs. Frequency

Output Return Loss vs. Frequency
Power Amplifier, 0.25 W
20 - 45 GHz

Typical Performance Curves: $V_D = 5$ V, $I_{DSQ} = 300$ mA

P3dB vs. Frequency

- $P3dB$ (dBm) vs. Frequency (GHz)
 - $+25°C$: Solid green line
 - $-40°C$: Solid blue line
 - $+85°C$: Solid red line

P1dB vs. Frequency

- $P1dB$ (dBm) vs. Frequency (GHz)
 - $+25°C$: Solid green line
 - $-40°C$: Solid blue line
 - $+85°C$: Solid red line

Ids vs. Frequency @ P3dB

- Ids (mA) vs. Frequency (GHz)
 - $+25°C$: Solid green line
 - $-40°C$: Solid blue line
 - $+85°C$: Solid red line

Igs vs. Frequency @ P3dB

- Igs (mA) vs. Frequency (GHz)
 - $+25°C$: Solid green line
 - $-40°C$: Solid blue line
 - $+85°C$: Solid red line
Power Amplifier, 0.25 W
20 - 45 GHz

Typical Performance Curves: \(V_D = 5 \text{ V}, I_{DSQ} = 300 \text{ mA} \)

Output Power vs. Input Power

Gain and PAE @ P3dB vs. Frequency

Drain Current vs. Input Power

PAE vs. Input Power

Detector Voltage vs. Output Power

Detector Voltage vs. Output Power @ 30 GHz
Power Amplifier, 0.25 W
20 - 45 GHz

Typical Performance Curves: \(V_D = 5 \text{ V}, \ I_{DSQ} = 300 \text{ mA} \)

Output IP3 vs. Frequency @ \(P_{out} = 18 \text{ dBm} / \text{Tone} \)

Output IP3 vs. Frequency @ \(P_{out} = 18 \text{ dBm} / \text{Tone} \)

Sample Board Thru Losses
Includes Two 2.4 mm Connectors

For further information and support please visit:
https://www.macom.com/support
Power Amplifier, 0.25 W
20 - 45 GHz

Die Dimensions

Units are in micro meters with a tolerance of ±5 µm, except for die exterior dimensions which are street-center-to-street-center – nominal saw or laser kerf is ~25 µm each dimension. Pads and backside metal are gold. Die thickness is 100 ± 10 µm.

Pad Dimensions (µm)

<table>
<thead>
<tr>
<th>Pad #</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 7</td>
<td>68</td>
<td>228</td>
</tr>
<tr>
<td>2, 8</td>
<td>68</td>
<td>78</td>
</tr>
<tr>
<td>3, 10, 13</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>4, 5, 11, 12</td>
<td>75</td>
<td>85</td>
</tr>
<tr>
<td>6, 9</td>
<td>65</td>
<td>65</td>
</tr>
</tbody>
</table>
MACOM Technology Solutions Inc. ("MACOM"). All rights reserved. These materials are provided in connection with MACOM’s products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

For further information and support please visit: https://www.macom.com/support

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.