Features
- Wide Frequency Range: 30 kHz - 40 GHz
- 15 dB Gain
- 3 - 8 V DC, 200 mA
- 22 dBm P1dB @ 22 GHz
- Integrated Power Detector with a Detector Reference Voltage Generator
- 50 Ω Input and Output Match
- RoHS* Compliant
- Die Size: 2.3 x 1.0 x 0.05 mm

Description
MAAM-011275-DIE is an easy-to-use, wideband amplifier that operates from 30 kHz to 40 GHz. The amplifier provides 15 dB gain, 22 dBm output power and 5.3 dB noise figure. It is matched to 50 Ω with typical return loss better than 13 dB.

MAAM-011275-DIE is suitable for a wide range of applications in instrumentation and communication systems.

Ordering Information

<table>
<thead>
<tr>
<th>Pad #</th>
<th>Pad Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3,5,7,14, 15,16</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>RF<sub>IN</sub></td>
<td>RF Input</td>
</tr>
<tr>
<td>4</td>
<td>V<sub>G1</sub></td>
<td>Gate Voltage 1</td>
</tr>
<tr>
<td>6</td>
<td>RF<sub>OUT</sub>/V<sub>DD</sub></td>
<td>RF Output</td>
</tr>
<tr>
<td>8</td>
<td>DET<sub>OUT</sub></td>
<td>Output Detector</td>
</tr>
<tr>
<td>9</td>
<td>DET<sub>REF</sub></td>
<td>Reference Detector</td>
</tr>
<tr>
<td>10</td>
<td>DET<sub>Bias</sub></td>
<td>Detector Bias</td>
</tr>
<tr>
<td>11</td>
<td>V<sub>DD</sub></td>
<td>Drain Voltage</td>
</tr>
<tr>
<td>12</td>
<td>V<sub>DAUX</sub></td>
<td>Auxiliary Drain Voltage</td>
</tr>
<tr>
<td>13</td>
<td>V<sub>G2</sub></td>
<td>Gate Voltage 2</td>
</tr>
</tbody>
</table>

1. Image not to scale.

2. Backside of die must be connected to RF, DC and thermal ground.

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.
Wideband Distributed Amplifier
30 kHz - 40 GHz

Electrical Specifications: $T_C = 25 \, ^\circ C$, $V_{DD} = 7 \, V$, $Z_0 = 50 \, \Omega$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>1 - 40 GHz</td>
<td>dB</td>
<td>13.5</td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td>Gain Flatness</td>
<td>1 - 40 GHz</td>
<td>dB</td>
<td>—</td>
<td>±0.75</td>
<td>—</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>1 - 40 GHz</td>
<td>dB</td>
<td>—</td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>1 - 40 GHz</td>
<td>dB</td>
<td>—</td>
<td>13</td>
<td>—</td>
</tr>
<tr>
<td>P1dB</td>
<td>22 GHz</td>
<td>dBm</td>
<td>—</td>
<td>21</td>
<td>—</td>
</tr>
<tr>
<td>P3dB</td>
<td>22 GHz</td>
<td>dBm</td>
<td>22.5</td>
<td>24</td>
<td>—</td>
</tr>
<tr>
<td>Output IP3</td>
<td>$P_{IN} = +2 , dBm / tone, 22 , GHz$</td>
<td>dBm</td>
<td>—</td>
<td>33</td>
<td>—</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>26 GHz 40 GHz</td>
<td>dB</td>
<td>—</td>
<td>5.3</td>
<td>6.8</td>
</tr>
<tr>
<td>Drain Current3</td>
<td>Quiescent bias</td>
<td>mA</td>
<td>—</td>
<td>200</td>
<td>—</td>
</tr>
</tbody>
</table>

3. Set by adjusting V_{G1} as outlined in operating conditions on page 3.

Absolute Maximum Ratings4,5

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power6</td>
<td>17 dBm</td>
</tr>
<tr>
<td>Drain Supply Voltage</td>
<td>10 V</td>
</tr>
<tr>
<td>V_{G1}</td>
<td>$-4 , V < V_{G1} < 0 , V$</td>
</tr>
<tr>
<td>V_{G2}</td>
<td>$-3.5 , V < V_{G2} < +4 , V$</td>
</tr>
<tr>
<td>Drain Supply Current</td>
<td>340 mA</td>
</tr>
<tr>
<td>Junction Temperature7,8</td>
<td>$+150^\circ C$</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>$-40^\circ C to +85^\circ C$</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>$-65^\circ C to +150^\circ C$</td>
</tr>
</tbody>
</table>

4. Exceeding any one or combination of these limits may cause permanent damage to this device.
5. MACOM does not recommend sustained operation near these survivability limits.
6. MACOM does not recommend sustained operation of power levels above 3 dB gain compression.
7. Operating at nominal conditions with $T_J \leq +150^\circ C$ will ensure $MTTF > 1 \times 10^6$ hours.
8. Junction Temperature ($T_J) = T_A + \theta_{JC} \times (\frac{V \times I}{P_{OUT} - P_{IN}})$
 Typical thermal resistance (θ_{JC}) = 11.9 °C/W.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1A devices.
Operating Conditions
The recommended biasing conditions are $V_{DD} = 7\, \text{V}$ and $I_{DSQ} = 200\, \text{mA}$, with I_{DSQ} set by adjusting V_{G1} after correctly setting V_{DD} (refer to turn on sequence). To maintain the best performance MACOM recommends using an active bias circuit for constant I_{DD}.

It is noted that any biasing arrangement used, including active biasing, must be able to source at least 10 mA into the V_{G1} port. This is because the V_{G1} port contains a resistive divider with a total resistance to ground of 244 Ω. For the recommended I_{DSQ} of 200 mA obtained at a V_{G1} voltage of around 2.5 V, 10 mA of V_{G1} current (I_{G1}) is expected. These values of V_{G1} and I_{G1} will vary slightly between devices.

There are two possible methods for biasing V_{DD}:

1. Apply V_{DD} through a bias tee connected to the RF OUT/V DD port and connect an external DC block to the RF IN port. This provides wide band performance of 40 MHz to 50 GHz (depending on the bandwidth of the bias tee).

2. Apply V_{DD} through a wideband conical inductor connected to the V DD port. No external bias tee is required at the RF OUT/V DD port; however, external DC blocks are required at both the RF IN and RF OUT ports. Using this method provides for an operational frequency of 40 MHz to 50 GHz.

Operating the MAAM-011275-DIE

Turn-on
1. Apply V_{G1} (-4 V).
2. Increase V_{DD} to +7 V.
3. Set I_{DSQ} by adjusting V_{G1} more positive.
 (typically -2.5 V for $I_{DSQ} = 200\, \text{mA}$).
4. Apply RF IN signal.

Turn-off
1. Remove RF IN signal.
2. Decrease V_{G1} to -4 V.
3. Decrease V_{DD} to 0 V.

V_{G2} can be used for gain control in all bias configurations. If gain control is not required, V_{G2} should be left open-circuited.

Regardless of bias method used, 2 bypass capacitors of 100 pF and 1 μF should be connected to V_{DAUX}. This provides for improved gain flatness below 2 GHz down to 30 kHz when required.

The 100 pF capacitor can be a single layer capacitor or an SMT device on the PCB. Although it should be positioned as closely to the device as practically possible, the frequency response is not particularly sensitive to this. The 1 μF capacitor can be placed further away on the PCB.

Data in this datasheet was measured using bias option 1 and 100 pF (C1) and 1 μF (C3) capacitors on V_{DAUX}.
Application Schematic

All bond pads labelled GND have vias to the backside metal. Bond wires on these pads are optional.

Component List

<table>
<thead>
<tr>
<th>Part</th>
<th>Value</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>100 pF</td>
<td>Single Layer</td>
</tr>
<tr>
<td>C2</td>
<td>1000 pF</td>
<td>0402</td>
</tr>
<tr>
<td>C3, C4</td>
<td>1 µF</td>
<td>0402</td>
</tr>
</tbody>
</table>
Typical Performance Curves: \(V_{DD} = 7 \) V, \(I_{DSQ} = 200 \) mA

Gain

-80
-60
-40
-20
0
0 10 20 30 40 50
-40°C
+25°C
+85°C
S21 (dB)
Frequency (GHz)

Reverse Isolation

-80
-60
-40
-20
0
0 10 20 30 40 50
-40°C
+25°C
+85°C
S12 (dB)
Frequency (GHz)

Input Return Loss

0
-5
-10
-15
-20
-25
0 10 20 30 40 50
-40°C
+25°C
+85°C
S11 (dB)
Frequency (GHz)

Output Return Loss

-25
-20
-15
-10
-5
0
0 10 20 30 40 50
-40°C
+25°C
+85°C
S22 (dB)
Frequency (GHz)
Wideband Distributed Amplifier
30 kHz - 40 GHz
Rev. V2

Typical Performance Curves: $V_{DD} = 7$ V, $I_{DSQ} = 200$ mA

Output P1dB

![Graph showing Output P1dB for different temperatures](image1)

Output P3dB

![Graph showing Output P3dB for different temperatures](image2)

Noise Figure @ +25°C

![Graph showing Noise Figure for different temperatures](image3)

OIP3

![Graph showing OIP3 for different temperatures](image4)
Typical Performance Curves: $T_A = +25^\circ C$, $I_{DSQ} = 200$ mA
Typical Performance Curves: \(V_{DD} = 7 \, \text{V}, \, T_A = +25^\circ \text{C} \)

- **Gain vs. \(I_{DD} \)**
 - Frequency (GHz) vs. \(S_{21} \) (dB)
 - Different currents: 200 mA, 220 mA, 230 mA, 240 mA

- **Reverse Isolation vs. \(I_{DD} \)**
 - Frequency (GHz) vs. \(S_{12} \) (dB)
 - Different currents: 200 mA, 220 mA, 230 mA, 240 mA

- **Input Return Loss vs. \(I_{DD} \)**
 - Frequency (GHz) vs. \(S_{11} \) (dB)
 - Different currents: 200 mA, 220 mA, 230 mA, 240 mA

- **Output Return Loss vs. \(I_{DD} \)**
 - Frequency (GHz) vs. \(S_{22} \) (dB)
 - Different currents: 200 mA, 220 mA, 230 mA, 240 mA

For further information and support please visit: https://www.macom.com/support
Die Dimensions

9. All units in μm, unless otherwise noted, with a tolerance of ±5 μm.
10. Die thickness is 50 ±5 μm.
11. Die size reflects un-cut dimensions. Laser kerf reduces die size by ~ 25 μm each dimension.

Bond Pad Detail

<table>
<thead>
<tr>
<th>Pad</th>
<th>X (μm)</th>
<th>Y (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 3, 5, 7</td>
<td>74</td>
<td>89</td>
</tr>
<tr>
<td>2, 6,</td>
<td>74</td>
<td>140</td>
</tr>
<tr>
<td>3, 13, 14, 16</td>
<td>76</td>
<td>76</td>
</tr>
<tr>
<td>8, 9, 10, 11</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>12</td>
<td>76</td>
<td>71</td>
</tr>
<tr>
<td>15</td>
<td>71</td>
<td>76</td>
</tr>
</tbody>
</table>
Wideband Distributed Amplifier
30 kHz - 40 GHz

MACOM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with MACOM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.