CATV Return Path Amplifier
5 - 300 MHz

Features
- 21 dB Adjustable Gain
- 2.25 dB Noise Figure
- +5 V, 95 mA Adjustable Bias
- Low Distortion
- Wide Bandwidth for DOCSIS 3.1
- Lead-Free MSOP8-EP Package
- RoHS* Compliant and 260°C Reflow Compatible

Description
The MAAM-011184 is a 75 Ω single ended GaAs MMIC amplifier assembled in a lead-free MSOP8-EP package. This device provides high gain, low noise, and excellent linearity from 5 - 300 MHz.

This amplifier is ideally suited for use in CATV return path applications, including DOCSIS 3.1 systems: it typically provides 2.25 dB noise figure, 64 dBm OIP2 and 43 dBm OIP3 while drawing 95 mA DC current at 5 V bias.

Functional Schematic

Pin Configuration

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BIAS1</td>
<td>VCC Bias</td>
</tr>
<tr>
<td>2</td>
<td>N/C</td>
<td>No Connection</td>
</tr>
<tr>
<td>3</td>
<td>RF_IN</td>
<td>RF Input</td>
</tr>
<tr>
<td>4</td>
<td>FB</td>
<td>Feedback</td>
</tr>
<tr>
<td>5</td>
<td>N/C</td>
<td>No Connection</td>
</tr>
<tr>
<td>6</td>
<td>RF_OUT</td>
<td>RF Output (DC Bias)</td>
</tr>
<tr>
<td>7</td>
<td>N/C</td>
<td>No Connection</td>
</tr>
<tr>
<td>8</td>
<td>BIAS2</td>
<td>Active Bias</td>
</tr>
<tr>
<td>9</td>
<td>Pad3</td>
<td>RF and DC Ground</td>
</tr>
</tbody>
</table>

1. All sample boards include 5 loose parts.
2. All pins listed as ‘No Connection’ should be grounded.
3. The exposed pad centered on the package bottom must be connected to RF and DC ground.

CATV Return Path Amplifier
5 - 300 MHz

Electrical Specifications\(^4\): \(T_A = 25^\circ C, V_{CC} = 5\) V, \(Z_0 = 75\) Ω

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>(P_{IN} = -21) dBm, 5 - 300 MHz (P_{IN} = -21) dBm, 205 MHz</td>
<td>dB</td>
<td>—</td>
<td>21</td>
<td>—</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>(P_{IN} = -21) dBm, 5 - 300 MHz</td>
<td>dB</td>
<td>—</td>
<td>26</td>
<td>—</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>(P_{IN} = -21) dBm, 5 - 300 MHz</td>
<td>dB</td>
<td>—</td>
<td>23</td>
<td>—</td>
</tr>
<tr>
<td>Reverse Isolation</td>
<td>(P_{IN} = -21) dBm, 5 - 300 MHz</td>
<td>dB</td>
<td>—</td>
<td>23</td>
<td>—</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>5 - 205 MHz (205 - 300) MHz</td>
<td>dB</td>
<td>—</td>
<td>2.25</td>
<td>2.5</td>
</tr>
<tr>
<td>P1dB</td>
<td>(5 - 300) MHz</td>
<td>dBm</td>
<td>—</td>
<td>21.7</td>
<td>—</td>
</tr>
<tr>
<td>OIP3(^5)</td>
<td>(P_{IN} = -21) dBm per tone, 3 MHz spacing, (f_1 = 5 - 205) MHz (P_{IN} = -21) dBm per tone, 3 MHz spacing, (f_1 = 205) MHz</td>
<td>dBm</td>
<td>—</td>
<td>43</td>
<td>—</td>
</tr>
<tr>
<td>OIP2(^5)</td>
<td>(P_{IN} = -21) dBm per tone, 3 MHz spacing, (f_1 = 5 - 205) MHz</td>
<td>dBm</td>
<td>—</td>
<td>41</td>
<td>—</td>
</tr>
<tr>
<td>Output Power</td>
<td>16 Channels, 5 - 205 MHz</td>
<td>dBm/Channel</td>
<td>—</td>
<td>51</td>
<td>—</td>
</tr>
<tr>
<td>at 30 dB MER(^6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC(^7)</td>
<td>(V_{CC} = 5) V</td>
<td>mA</td>
<td>—</td>
<td>95</td>
<td>115</td>
</tr>
</tbody>
</table>

4. Data corresponds to the typical application circuit shown on page 3 of this datasheet. See pages 4 and 5 for typical performance using this application circuit.
5. \(f_1\) is the frequency of the lower of the two input tones. Higher tone \(f_2 = f_1 + 3\) MHz. OIP2 is measured at intermodulation frequency \(f_1 + f_2\).
6. Modulation Error Ratio, 64 QAM 5.12 MS/s.
7. ICC is the total DC current draw from the \(V_{CC}\) supply. As shown on page 3 of this datasheet, it is distributed to device pins 1, 6, and 8.

Absolute Maximum Ratings\(^8,9\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>11 dBm</td>
</tr>
<tr>
<td>(V_{CC})</td>
<td>6 V</td>
</tr>
<tr>
<td>Junction Temperature(^10,11)</td>
<td>(+150^\circ C)</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>(-40^\circ C to +85^\circ C)</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>(-65^\circ C to +125^\circ C)</td>
</tr>
</tbody>
</table>

8. Exceeding any one or a combination of these limits may cause permanent damage to this device.
9. MACOM does not recommend sustained operation near these survivability limits.
10. Operating at nominal conditions with \(T_J \leq 150^\circ C\) will ensure \(MTTF > 1 \times 10^6\) hours.
11. Junction Temperature (\(T_J\)) = \(T_C + \Theta_{jc} \times (V \times I)\)
 Typical thermal resistance (\(\Theta_{jc}\)) = 44° C/W.
 a) For \(T_C = +25^\circ C\),
 \(T_J = 46^\circ C @ 5\) V, 95 mA
 b) For \(T_C = +85^\circ C\),
 \(T_J = 106^\circ C @ 5\) V, 95 mA

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.
Typical Application Circuit: Schematic

Typical Application Circuit: Component Values

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 - C6</td>
<td>100 nF</td>
</tr>
<tr>
<td>C7</td>
<td>0.5 pF</td>
</tr>
<tr>
<td>R1</td>
<td>330 Ω</td>
</tr>
<tr>
<td>R2</td>
<td>SHORT - 0 Ω</td>
</tr>
<tr>
<td>L1</td>
<td>22 µH</td>
</tr>
<tr>
<td>L2</td>
<td>27 nH</td>
</tr>
<tr>
<td>L3</td>
<td>10 nH</td>
</tr>
</tbody>
</table>

12. Designers may decrease resistor R1 to reduce the gain of the amplifier by approximately 1 dB per 164 Ohms. Below 19.8 dB gain, typical input and output return losses fall below 20 dB. Resistor R2 may be increased in order to reduce bias current I_{CC} (at the cost of large-signal performance) by approximately 1 mA per 42 Ohms.

13. Low-ESR inductor LQH2MCN220K02 from Murata.

Typical Application Circuit: Sample Board Layout
Typical Performance Curves: Small-Signal

Gain

- **S21 (dB)**
 - Frequency (MHz)
 - S21 (dB) values for different temperatures:
 - +25°C
 - -40°C
 - +85°C

Reverse Isolation

- **S12 (dB)**
 - Frequency (MHz)
 - S12 (dB) values for different temperatures:
 - +25°C
 - -40°C
 - +85°C

Input Return Loss

- **S11 (dB)**
 - Frequency (MHz)
 - S11 (dB) values for different temperatures:
 - +25°C
 - -40°C
 - +85°C

Output Return Loss

- **S22 (dB)**
 - Frequency (MHz)
 - S22 (dB) values for different temperatures:
 - +25°C
 - -40°C
 - +85°C

Noise Figure

- **NF (dB)**
 - Frequency (MHz)
 - NF (dB) values for different temperatures:
 - +25°C
 - -40°C
 - +85°C
Typical Performance Curves: Large-Signal

P1dB

![P1dB Graph]

OIP2

![OIP2 Graph]

OIP3

![OIP3 Graph]

MER, 16 Channels 64-QAM

![MER Graph]
MAAM-011184

CATV Return Path Amplifier
5 - 300 MHz

Rev. V2

Lead-Free MSOP8-EP Package†

†Dimensions shown as inches over millimeters [in/mm].
Meets JEDEC moisture sensitivity level 1 requirements.
Plating is 100% matte tin over copper.