Features

- 21 dB Adjustable Gain
- 2.25 dB Noise Figure
- +5 V, 95 mA Adjustable Bias
- Low Distortion
- Wide Bandwidth for DOCSIS 3.1
- Lead-Free MSOP8-EP Package
- RoHS* Compliant and 260°C Reflow Compatible

Description

The MAAM-011184 is a 75 Ω single ended GaAs MMIC amplifier assembled in a lead-free MSOP8-EP package. This device provides high gain, low noise, and excellent linearity from 5 - 300 MHz.

This amplifier is ideally suited for use in CATV return path applications, including DOCSIS 3.1 systems: it typically provides 2.25 dB noise figure, 64 dBm OIP2 and 43 dBm OIP3 while drawing 95 mA DC current at 5 V bias.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAM-011184-TR1000</td>
<td>1000 piece reel</td>
</tr>
<tr>
<td>MAAM-011184-TR3000</td>
<td>3000 piece reel</td>
</tr>
<tr>
<td>MAAM-011184-001SMB</td>
<td>Sample Board</td>
</tr>
</tbody>
</table>

1. All sample boards include 5 loose parts.

Electrical Specifications

$T_A = 25^\circ C, V_{CC} = 5\, V, Z_0 = 75\, \Omega$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>$P_{IN} = -21, dBm, 5 - 300, MHz$ $P_{IN} = -21, dBm, 205, MHz$</td>
<td>dB</td>
<td>—</td>
<td>21</td>
<td>—</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>$P_{IN} = -21, dBm, 5 - 300, MHz$</td>
<td>dB</td>
<td>—</td>
<td>26</td>
<td>—</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>$P_{IN} = -21, dBm, 5 - 300, MHz$</td>
<td>dB</td>
<td>—</td>
<td>23</td>
<td>—</td>
</tr>
<tr>
<td>Reverse Isolation</td>
<td>$P_{IN} = -21, dBm, 5 - 300, MHz$</td>
<td>dB</td>
<td>—</td>
<td>23</td>
<td>—</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>5 - 205 MHz $205 - 300, MHz$</td>
<td>dB</td>
<td>—</td>
<td>2.25</td>
<td>2.5</td>
</tr>
<tr>
<td>P1dB</td>
<td>5 - 300 MHz</td>
<td>dBm</td>
<td>—</td>
<td>21.7</td>
<td>—</td>
</tr>
<tr>
<td>OIP35</td>
<td>$P_{IN} = -21, dBm per tone, 3, MHz$ spacing, $f_1 = 5 - 205, MHz$ $P_{IN} = -21, dBm per tone, 3, MHz$ spacing, $f_1 = 205, MHz$</td>
<td>dBm</td>
<td>—</td>
<td>43</td>
<td>41</td>
</tr>
<tr>
<td>OIP26</td>
<td>$P_{IN} = -21, dBm per tone, 3, MHz$ spacing, $f_1 = 5 - 205, MHz$</td>
<td>dBm</td>
<td>—</td>
<td>64</td>
<td>—</td>
</tr>
<tr>
<td>Output Power at 30 dB MER6</td>
<td>16 Channels, 5 - 205 MHz</td>
<td>dBm/Channel</td>
<td>—</td>
<td>51</td>
<td>—</td>
</tr>
<tr>
<td>I_{CC}^7</td>
<td>$V_{CC} = 5, V$</td>
<td>mA</td>
<td>—</td>
<td>95</td>
<td>115</td>
</tr>
</tbody>
</table>

4. Data corresponds to the typical application circuit shown on page 3 of this datasheet. See pages 4 and 5 for typical performance using this application circuit.
5. f_1 is the frequency of the lower of the two input tones. Higher tone $f_2 = f_1 + 3\, MHz$. OIP2 is measured at intermodulation frequency $f_1 + f_2$.
6. Modulation Error Ratio, 64 QAM 5.12 MS/s.
7. I_{CC} is the total DC current draw from the V_{CC} supply. As shown on page 3 of this datasheet, it is distributed to device pins 1, 6, and 8.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.
MAAM-011184

CATV Return Path Amplifier
5 - 300 MHz

Typical Application Circuit: Schematic

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 - C6</td>
<td>100 nF</td>
</tr>
<tr>
<td>C7</td>
<td>0.5 pF</td>
</tr>
<tr>
<td>R1</td>
<td>330 Ω</td>
</tr>
<tr>
<td>R2</td>
<td>SHORT - 0 Ω</td>
</tr>
<tr>
<td>L1</td>
<td>22 µH</td>
</tr>
<tr>
<td>L2</td>
<td>27 nH</td>
</tr>
<tr>
<td>L3</td>
<td>10 nH</td>
</tr>
</tbody>
</table>

12. Designers may decrease resistor R1 to reduce the gain of the amplifier by approximately 1 dB per 164 Ohms. Below 19.8 dB gain, typical input and output return losses fall below 20 dB. Resistor R2 may be increased in order to reduce bias current Icc (at the cost of large-signal performance) by approximately 1 mA per 42 Ohms.

13. Low-ESR inductor LQH2MCN220K02 from Murata.

Typical Application Circuit: Sample Board Layout

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:
https://www.macom.com/support
Typical Performance Curves: Small-Signal

Gain

- $S_{21} \text{ (dB)}$
 - Frequency (MHz): 0 - 400
 - Temperature: +25 °C, -40 °C, +85 °C

Reverse Isolation

- $S_{12} \text{ (dB)}$
 - Frequency (MHz): 0 - 400
 - Temperature: +25 °C, -40 °C, +85 °C

Input Return Loss

- $S_{11} \text{ (dB)}$
 - Frequency (MHz): 0 - 400
 - Temperature: +25 °C, -40 °C, +85 °C

Output Return Loss

- $S_{22} \text{ (dB)}$
 - Frequency (MHz): 0 - 400
 - Temperature: +25 °C, -40 °C, +85 °C

Noise Figure

- $NF \text{ (dB)}$
 - Frequency (MHz): 0 - 400
 - Temperature: +25 °C, -40 °C, +85 °C

MAAM-011184

MAAM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:
https://www.macom.com/support
Typical Performance Curves: Large-Signal

P1dB

![P1dB Graph](image)

OIP2

![OIP2 Graph](image)

OIP3

![OIP3 Graph](image)

MER, 16 Channels 64-QAM

![MER Graph](image)
Lead-Free MSOP8-EP Package†

†Dimensions shown as inches over millimeters [in/mm].
Meets JEDEC moisture sensitivity level 1 requirements.
Plating is 100% matte tin over copper.
M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.