Features
- 4 Stage Driver Amplifier for E Band
- 18 dB Gain
- 10 dB Input and Output Match
- 24 dBm Saturated Output Power
- 27 dBm OIP3
- Variable Gain with Adjustable Bias
- Integrated Detector
- Bare die
- RoHS* Compliant
- HBM ESD rating of 200 V
- Size: 3780 x 1500 x 50 µm

Description
The MAAM-011167 is a bare die power amplifier that operates from 71 - 86 GHz. The amplifier provides 18 dB small signal gain. The input and output are matched to 50 Ω with bond wires to external board.

It is designed for use as a driver stage in transmit chains and is ideally suited for E band point to point radios.

Each device is 100% RF tested to ensure performance compliance. The part is fabricated using an efficient pHEMT process.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAM-011167-DIE</td>
<td>Die in Vacuum release gel pack</td>
</tr>
</tbody>
</table>

Chip Device Layout

Pad Configuration

<table>
<thead>
<tr>
<th>Pad No.</th>
<th>Function</th>
<th>Pad No.</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VD1</td>
<td>9</td>
<td>VREF</td>
</tr>
<tr>
<td>2</td>
<td>VD2</td>
<td>10</td>
<td>GNDDET</td>
</tr>
<tr>
<td>3</td>
<td>VD3</td>
<td>11</td>
<td>VG4</td>
</tr>
<tr>
<td>4</td>
<td>VD4</td>
<td>12</td>
<td>VG3</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>13</td>
<td>VG2</td>
</tr>
<tr>
<td>6</td>
<td>RFOUT</td>
<td>14</td>
<td>VG1</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>15</td>
<td>GND</td>
</tr>
<tr>
<td>8</td>
<td>VDET</td>
<td>16</td>
<td>RFIN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>GND</td>
</tr>
</tbody>
</table>

Electrical Specifications\(^1\): Freq. = 71 - 86 GHz, \(V_D = 4\) V, \(I_D = 360\) mA, \(T_A = 25\)°C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>dB</td>
<td>16</td>
<td>18</td>
<td>-</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>dB</td>
<td>-</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>dB</td>
<td>-</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>(P_{1dB})</td>
<td>dB</td>
<td>-</td>
<td>21</td>
<td>-</td>
</tr>
<tr>
<td>(P_{OUT}) with (P_{IN}) = 10 dBm</td>
<td>dBm</td>
<td>20</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>(P_{SAT}) (P3dB)</td>
<td>dBm</td>
<td>-</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>OIP3 (worst tone)</td>
<td>dBm</td>
<td>-</td>
<td>27</td>
<td>-</td>
</tr>
<tr>
<td>IIP3 (worst tone) for Gain = 20 turned-down to -5 dB</td>
<td>dBm</td>
<td>-</td>
<td>10</td>
<td>-</td>
</tr>
</tbody>
</table>

1. Minimum limits are the on-wafer minimum test limits.
2. Quiescent DC Bias: \(I_{D1} = 30\) mA, \(I_{D2} = 60\) mA, \(I_{D3} = 120\) mA, \(I_{D4} = 150\) mA. Total DC Power = 1.44 W.

Absolute Maximum Ratings\(^3,4,5\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain Voltage</td>
<td>4.3 V</td>
</tr>
<tr>
<td>Drain Current</td>
<td>460 mA</td>
</tr>
<tr>
<td>Gate Bias Voltage ((V_{G1,2,3,4}))</td>
<td>(-1.5 V < V_G < +0.3 V)</td>
</tr>
<tr>
<td>Input Power</td>
<td>13 dBm</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-55°C to +150°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>150°C</td>
</tr>
<tr>
<td>Thermal Resistance</td>
<td>16.15°C/W</td>
</tr>
</tbody>
</table>

3. Exceeding any one or combination of these limits may cause permanent damage to this device.
4. MACOM does not recommend sustained operation near these survivability limits.
5. Operating at nominal conditions with \(T_J \leq 150\)°C will ensure MTTF > 1 x 10\(^6\) hours.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these class 0 static sensitive devices.
Medium Power Amplifier
71 - 86 GHz

Typical Performance Curves

Gain @ $VD = 4\, V$, $I_{DQ} = 360\, mA$

Reverse Isolation @ $VD = 4\, V$, $I_{DQ} = 360\, mA$

Input Return Loss @ $VD = 4\, V$, $I_{DQ} = 360\, mA$

Output Return Loss @ $VD = 4\, V$, $I_{DQ} = 360\, mA$
Typical Performance Curves

Gain, @ VD = 4 V, Frequency = 80 GHz

Reverse Isolation @ VD = 4 V, Frequency = 80 GHz

Input Return Loss @ VD = 4 V, Frequency = 80 GHz

Output Return Loss @ VD = 4 V, Frequency = 80 GHz

Detector Delta Voltage @ VD = 4 V
Typical Performance Curves

P1dB vs. Frequency @ VD = 4 V, l_{DQ} = 360 mA

P3dB vs. Frequency @ VD = 4 V, l_{DQ} = 360 mA

Output IP3 vs. Frequency @ VD = 4 V, l_{DQ} = 250 mA

Output IP3 vs. Frequency @ VD = 4 V, l_{DQ} = 360 mA

P_{OUT}, P_{IN} = 10 dBm @ VD = 4 V, l_{DQ} = 250 mA

P_{OUT}, P_{IN} = 10 dBm @ VD = 4 V, l_{DQ} = 360 mA
Medium Power Amplifier
71 - 86 GHz

Typical Performance Curves

Lower Tone Gain vs. Total Current @ VD = 4 V

Upper Tone Gain vs. Total Current @ VD = 4 V

Lower Tone Input IP3 vs. Total Current @ VD = 4 V

Upper Tone Input IP3 vs. Total Current @ VD = 4 V

Lower Tone Output IP3 vs. Total Current @ VD = 4 V

Upper Tone Output IP3 vs. Total Current @ VD = 4 V
Medium Power Amplifier
71 - 86 GHz

Calibration Plane
All data was measured on die with 200 µm pitch probes. The calibration plane is at the middle of the through, 178.5 µm from the middle of the RF pad.

App Note [1] Biasing -
All gates should be pinched-off ($V_G < -1$ V) before applying drain voltage ($V_D = 4$ V). Then the gate voltages can be increased until the desired quiescent drain current is reached in each stage. The recommended quiescent bias is $V_D = 4$ V, $I_{D1} = 30$ mA, $I_{D2} = 60$ mA, $I_{D3} = 120$ mA and $I_{D4} = 150$ mA. The performance in this datasheet has been measured with the gate bias set to the voltage that gives the stated value of the quiescent current. It is also possible to regulate the drain current dynamically, to limit the DC power dissipation under RF drive. To turn off the device, the turn on bias sequence should be followed in reverse.

App Note [2] Bias Arrangement -
Each DC pin ($V_{G1,2,3,4}$ and $V_{D1,2,3,4}$) needs to have bypass capacitance (120 pF and 10 nF) mounted as close to the MMIC as possible.

App Note [3] Wire Bonding -
The loop height of the RF bonds should be minimized. Where the die is mounted above the PCB, it is recommended to use Reverse Ball-Stitch-on-Ball bonds (BSOB). If the die is mounted inside a cavity on the board, Forward Loop bonding may result in a lower loop height.

V-shape RF bond with two wires (diameter = 25 µm) is recommended for optimum RF performance.

RF bond wire length to be minimized to reduce the inductance effect. Simulations suggest no more than 300 µm. Substrate RF pad can be optimized to improve the Microstrip to MMIC bond transition as shown in the example below.
App Note [4] Detector biasing schematic -
As shown in the schematic below, the power detector is biased by matched 120 kΩ resistors to a 5 V bias. The difference voltage between \(V_{\text{DET}} \) and \(V_{\text{REF}} \) pins can be obtained using the op-amp differencing circuit shown below.

![Detector biasing schematic](image)

Layout Dimensions

- **Die Thickness**: 50µm
- **RF Pads**: 60 x 120µm²
- **DC Pads**: 100 x 100µm²
Assembly Diagram
Medium Power Amplifier
71 - 86 GHz

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.