Wideband Amplifier
10 MHz - 40 GHz

Features
- 13 dB Gain
- 50 Ω Input / Output Match
- +18 dBm Output Power
- +5 V DC, 190 mA
- Lead-Free 5 mm 9-lead LGA Package
- RoHS* Compliant and 260°C Reflow Compatible

Description
The MAAM-011109 is an easy-to-use, wideband amplifier that operates from 10 MHz - 40 GHz. The device features 13 dB gain and +18 dBm of output power. Matching is 50 Ω with typical return loss better than 15 dB. This amplifier requires dual DC supplies: 5 V (190 mA) and a low current –5 V (<1 mA).

The MAAM-011109 integrates an ultra-broadband bias choke, DC blocking and bypass capacitors. Other features include a gate bias adjust pin to change current setting for power or temperature, a gain trim control pin that allows 15 dB of gain control (0 to -1V), and a temperature compensated detector pin that provides a DC voltage in relation to output power.

The MAAM-011109 is ideally suited for any application that requires 50 Ω gain from 10 MHz to 40 GHz. It is useful in applications where the incoming signal varies over a broad bandwidth such as laboratory, instrumentation, and defense applications.

This device is housed in a leadless 5 X 5 X 1.3 mm package that can be handled and placed with standard pick and place assembly equipment. The package base is a two layer laminate with overmold fully compatible with PCB environment and wash conditions. The module includes a GaAs MMIC that is fully passivated for performance and reliability.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAM-011109</td>
<td>bulk quantity</td>
</tr>
<tr>
<td>MAAM-011109-TR1000</td>
<td>1000 piece reel</td>
</tr>
<tr>
<td>MAAM-011109-001SMB</td>
<td>Sample board</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.
2. All sample boards include 3 loose parts.

For further information and support please visit:
https://www.macomtech.com/content/customersupport
Wideband Amplifier
10 MHz - 40 GHz

Electrical Specifications: \(T_A = +25^\circ C, \ V_D = +5 \ V, \ V_E = -5 \ V, \ V_C = \text{Open}, \ Z_{IN} = Z_{OUT} = 50 \ \Omega \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>0.1 GHz</td>
<td>dB</td>
<td>—</td>
<td>12.0</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2 GHz</td>
<td></td>
<td>11.0</td>
<td>13.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 GHz</td>
<td></td>
<td>10.0</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 GHz</td>
<td></td>
<td>10.0</td>
<td>11.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32 GHz</td>
<td></td>
<td>8.0</td>
<td>11.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40 GHz</td>
<td></td>
<td>—</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>Isolation</td>
<td>0.01 - 40 GHz</td>
<td>dB</td>
<td>—</td>
<td>22</td>
<td>—</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>0.01 - 40 GHz</td>
<td>dB</td>
<td>—</td>
<td>13</td>
<td>—</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>0.01 - 40 GHz</td>
<td>dB</td>
<td>—</td>
<td>9</td>
<td>—</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>0.01 - 40 GHz</td>
<td>dB</td>
<td>—</td>
<td>3.5</td>
<td>—</td>
</tr>
<tr>
<td>P1dB</td>
<td>0.1 GHz</td>
<td>dBm</td>
<td>—</td>
<td>+18</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>10 GHz</td>
<td></td>
<td>—</td>
<td>+17</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>40 GHz</td>
<td></td>
<td>—</td>
<td>+13</td>
<td>—</td>
</tr>
<tr>
<td>Output IP3</td>
<td>0.1 GHz</td>
<td>dBm</td>
<td>—</td>
<td>+26</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>10 GHz</td>
<td></td>
<td>—</td>
<td>+24</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>40 GHz</td>
<td></td>
<td>—</td>
<td>+16</td>
<td>—</td>
</tr>
<tr>
<td>Bias Current</td>
<td>(V_D = +5 \ V, \ V_E = -5 \ V)</td>
<td>mA</td>
<td>—</td>
<td>170</td>
<td>—</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings\(^4,5,6\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>+17 dBm</td>
</tr>
<tr>
<td>Drain Supply Voltage</td>
<td>+8 Volts</td>
</tr>
<tr>
<td>Junction Temperature(^7)</td>
<td>+150°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
</tbody>
</table>

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1B devices.

4. Exceeding any one or combination of these limits may cause permanent damage to this device.
5. MACOM does not recommend sustained operation near these survivability limits.
6. Operating at nominal conditions with \(T_J \leq 150^\circ C \) will ensure MTTF > 1 x 10^6 hours.
7. Junction Temperature (\(T_J \)) = \(T_C + \Theta_{JC} * (V * I) - (P_{OUT} - P_{IN}) \)
 Typical thermal resistance (\(\Theta_{JC} \)) = 21°C/W
 a) For \(T_C = 25^\circ C \),
 \(T_J = 43^\circ C \) @ \(5 \ V, \ 190 \ mA, \ P_{OUT} = 20 \ dBm, \ P_{IN} = 7 \ dBm \)
 b) For \(T_C = 85^\circ C \),
 \(T_J = 103^\circ C \) @ \(5 \ V, \ 190 \ mA, \ P_{OUT} = 20 \ dBm, \ P_{IN} = 7 \ dBm \)
Application Information for DC & pins

For proper MAAM-011109 operation a DC voltage must be applied at the \(V_E \) (-5 V) and \(V_D \) (+5 V) pins in that order. The optional \(V_G \) pin maybe used to override the automatic \(V_E \) bias network to hard set the gate. Adjusting \(V_G \) from -0.2 V to -0.6 V will change the quiescent current. If \(V_G \) is used, \(V_E \) should be left unconnected.

The \(V_C \) pin is typically left unconnected unless gain control or output power limiting is desired. Please refer to the “Variable Gain/Limiting” section for detailed usage.

The \(V_D \) pin should be bypassed with at least 0.1 \(\mu \)F for stability. For operation below 100 MHz a ferrite bead (Murata BLM18BB471) must be inserted between the \(V_D \) pin and bypass capacitor. The \(V_G \) and \(V_C \) pins must also be bypassed with a 0.1 \(\mu \)F capacitor if operating below 100 MHz.

The \(V_{DET} \) pin is typically left unconnected unless a voltage reference is desired that is correlated to the output power. Please refer to the “Internal Detector” section for detailed usage.

The \(B_C \) pin is typically left unconnected unless gain bandwidth and shape change is desired. Please refer to an application note on this pin.

The input and output pins are internally DC blocked. No more than +/- 12 V should ever be present on these RF only pins.

The backside paddle of the MAAM-011109 should be connected to ground with as many vias as possible to maximize high frequency performance, thermal dissipation, and stability.

Parts List

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0.22 (\mu)F</td>
<td>0201</td>
</tr>
<tr>
<td>L1</td>
<td>470 (\Omega)</td>
<td>0603</td>
</tr>
</tbody>
</table>
Typical Performance Curves over Temperature

Gain

![Gain Graph](image1)

Noise Figure

![Noise Figure Graph](image2)

Input Return Loss

![Input Return Loss Graph](image3)

Output Return Loss

![Output Return Loss Graph](image4)

Output P1dB

![Output P1dB Graph](image5)

Output IP3

![Output IP3 Graph](image6)
Typical Performance Curves vs. Voltage and Current

- **Gain**
 - Frequency (GHz) vs. S_{21} (dB) for different voltages and currents:
 - $3.3\,\text{V},\,150\,\text{mA}$
 - $3.3\,\text{V},\,190\,\text{mA}$
 - $5\,\text{V},\,150\,\text{mA}$
 - $5\,\text{V},\,190\,\text{mA}$

- **Noise Figure**
 - Frequency (GHz) vs. Noise Figure (dB) for different voltages and currents:
 - $3.3\,\text{V},\,150\,\text{mA}$
 - $3.3\,\text{V},\,190\,\text{mA}$
 - $5\,\text{V},\,150\,\text{mA}$
 - $5\,\text{V},\,190\,\text{mA}$

- **Input Return Loss**
 - Frequency (GHz) vs. S_{11} (dB) for different voltages and currents:
 - $3.3\,\text{V},\,150\,\text{mA}$
 - $3.3\,\text{V},\,190\,\text{mA}$
 - $5\,\text{V},\,150\,\text{mA}$
 - $5\,\text{V},\,190\,\text{mA}$

- **Output Return Loss**
 - Frequency (GHz) vs. S_{22} (dB) for different voltages and currents:
 - $3.3\,\text{V},\,150\,\text{mA}$
 - $3.3\,\text{V},\,190\,\text{mA}$
 - $5\,\text{V},\,150\,\text{mA}$
 - $5\,\text{V},\,190\,\text{mA}$

- **Output P1dB**
 - Frequency (GHz) vs. Output P1dB (dBm) for different voltages and currents:
 - $3.3\,\text{V},\,150\,\text{mA}$
 - $3.3\,\text{V},\,190\,\text{mA}$
 - $5\,\text{V},\,150\,\text{mA}$
 - $5\,\text{V},\,190\,\text{mA}$

- **Output IP3**
 - Frequency (GHz) vs. Output IP3 (dBm) for different voltages and currents:
 - $3.3\,\text{V},\,150\,\text{mA}$
 - $3.3\,\text{V},\,190\,\text{mA}$
 - $5\,\text{V},\,150\,\text{mA}$
 - $5\,\text{V},\,190\,\text{mA}$
Typical Performance Curves

Isolation

![Isolation Graph](image1)

Gain vs. Frequency, Vc = -0.9 to 1.1 V

![Gain Graph](image2)

Stability Factor

![Stability Factor Graph](image3)

Output Saturated Power

![Output Saturated Power Graph](image4)

Gain @ 5 GHz vs. Control Voltage

![Gain Graph](image5)

Low Frequency Response

![Low Frequency Response Graph](image6)
Typical Performance Curves

V_{DET} vs. Output Power

Current vs. Gate Voltage

Current vs. Control Voltage

V_{DET} vs. Output Power @ 2 GHz

For further information and support please visit:
https://www.macomtech.com/content/customersupport
Application Details

Bandwidth, Power, Noise and Linearity

V_D and I_D affect both the bandwidth (response flatness), power available, noise figure, and linearity of the amplifier. Higher currents and lower V_D increase high frequency gain but reduce the P_{1dB} and the $OIP3$ numbers. If the device is driven to P_{1dB} and on into P_{SAT} the current, I_D, will naturally reduce. The device will return to the quiescent I_D value once the input power is reduced. Finally, higher I_D and V_D values increase the device noise figure. Temperature also affects the bandwidth, gain and noise figure of the device. Lower temperatures increase gain and bandwidth and reduce the noise figure. Temperature has little effect on power and linearity.

Broadband Amplifier Applications

The MAAM-011109 also has a low enough noise figure to be used in instrumentation front ends and buffer applications. It also has a very flat response with low group delay distortion so it can be used in pulse applications. For higher gains multiple amplifiers may be cascaded. It also makes a very good low cost optical driver capable of delivering to 8 V p-p into 50 Ω.

Variable Gain/Limiting Applications

The gain of the MAAM-011109 can be easily controlled with the V_C pin. The gain reduction is almost linear with V_C between 0.1 V to -0.8 V. Below -0.7 V internal ESD protection diodes will draw increasing current (50 mA at -1.0 V). The V_C pin should not be driven below -1 V or above 1.2 V. The nominal open circuit voltage at the V_C pin is 0.8 V. Reducing V_C below 0.8 V will also reduce I_D. Gain, P_{1dB}, and P_{SAT} will all be reduced as V_C is lowered. Limiting applications and zero crossing adjustment can be done by adjusting the V_G and V_C pins together.

Internal Detector

The V_{DET} pin is connected to an internal diode detector. This pin should be connected to a high impedance (>50 kΩ) or left unconnected. The detector is internally connected so that it responds predominately to the power generated by the amplifier. The detector has a low pass characteristic which rolls off gradually above 2 GHz. The detector is temperature compensated. Finally, even with zero output power the detector has a DC output voltage proportional to V_D (nominally 2.8 V for $V_D = 5$ V).

Lead-Free 5 mm 9-lead LGA

1 Reference Application Note S2083 for lead-free solder reflow recommendations.

Meets JEDEC moisture sensitivity level 3 requirements.

Plating is gold over nickel.