MAAM-011100

Broadband Variable Gain Amplifier (VGA)
400 MHz - 20 GHz

Features
- 12 dB Gain
- 50 Ω Input / Output Match over Gain Range
- 30 dB Gain Control with 0 to -2 V Control
- +18 dBm Output Power
- +5 V, -0.5 V DC, 70 mA
- Lead-Free 1.5 x 1.2 mm 6-lead TDFN Package
- RoHS* Compliant and 260°C Reflow Compatible

Description
The MAAM-011100 is an easy-to-use, broadband, general purpose variable gain amplifier. Its over 30 dB gain range is controlled by a single control pin and 50 Ω match is maintained over all settings.

The MAAM-011100 operates from 400 MHz to 20 GHz and features flat gain control from +10 dB to -20 dB. At maximum gain setting (V_C=Open) it delivers up to +18 dBm power and under 5 dB noise figure. Both reduce proportionally as gain is reduced with V_C. The input IP3 exceeds +15 dBm at max/min gain settings. The device is typically biased with a V_D = +5 V, V_G = -0.5 V, and a control of 0 V to -2 V. Typical current is 70 mA with V_G at -0.5 V

The MAAM-011100 is ideally suited for use as a power amplifier driver, gain trimming block, or temperature compensation in the receive or transmit mode. Typical applications include Wi-Fi, LTE, Point-to-Point, IMS, EW, and A&D systems.

This device is assembled in a leadless 1.5 X 1.2 mm package that can be handled and placed with standard pick and place assembly equipment.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAM-011100</td>
<td>bulk quantity</td>
</tr>
<tr>
<td>MAAM-011100-TR1000</td>
<td>1000 piece reel</td>
</tr>
<tr>
<td>MAAM-011100-001SMB</td>
<td>Sample board</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.
2. All sample boards include 5 loose parts.

Broadband Variable Gain Amplifier (VGA)
400 MHz - 20 GHz

Electrical Specifications (unless otherwise noted):
Freq = 10 GHz, $T_A = +25^\circ\text{C}$, $V_D = +5\text{ V}$, $V_G = -0.5\text{ V}$, $V_C = \text{Open}$, $Z_{IN} = Z_{OUT} = 50\ \Omega$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest Gain</td>
<td>$V_C = \text{open} @ 400\ \text{MHz}$ $V_C = \text{open} @ 10\ \text{GHz}$ $V_C = \text{open} @ 20\ \text{GHz}$</td>
<td>dB</td>
<td>8</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Lowest Gain</td>
<td>$V_C = -2\ \text{V} @ 400\ \text{MHz}$ $V_C = -2\ \text{V} @ 10\ \text{GHz}$ $V_C = -2\ \text{V} @ 20\ \text{GHz}$</td>
<td>dB</td>
<td>—</td>
<td>-33</td>
<td>-23</td>
</tr>
<tr>
<td>Gain Control</td>
<td>$V_C = 0\ \text{to} -2\ \text{V}$</td>
<td>dB</td>
<td>—</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>Isolation</td>
<td>All States</td>
<td>dB</td>
<td>—</td>
<td>28</td>
<td>—</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>All States</td>
<td>dB</td>
<td>—</td>
<td>14</td>
<td>—</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>All States</td>
<td>dB</td>
<td>—</td>
<td>12</td>
<td>—</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>At maximum gain</td>
<td>dB</td>
<td>—</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>$P_{1\text{dB}}$</td>
<td>At maximum gain @ 10 GHz</td>
<td>dBm</td>
<td>—</td>
<td>+15</td>
<td>—</td>
</tr>
<tr>
<td>Input IP3</td>
<td>At maximum or minimum gain</td>
<td>dBm</td>
<td>—</td>
<td>+15</td>
<td>—</td>
</tr>
<tr>
<td>Stability</td>
<td>Any Load</td>
<td>-</td>
<td>unconditional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage Supply</td>
<td>External Choke</td>
<td>V</td>
<td>—</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>Bias Current</td>
<td>$V_D = +5\ \text{V}$ $V_D = -0.5\ \text{V}$</td>
<td>mA</td>
<td>—</td>
<td>75</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings\(^4,5,6\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>+15 dBm</td>
</tr>
<tr>
<td>Operating Voltage</td>
<td>+8 Volts</td>
</tr>
<tr>
<td>Operating Current</td>
<td>110 mA</td>
</tr>
<tr>
<td>Junction Temperature(^7)</td>
<td>+150°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
</tbody>
</table>

4. Exceeding any one or combination of these limits may cause permanent damage to this device.
5. MACOM does not recommend sustained operation near these survivability limits.
6. Operating at nominal conditions with $T_J \leq 150^\circ\text{C}$ will ensure MTTF $> 1 \times 10^6$ hours.
7. Junction Temperature ($T_J = T_C + \Theta_{JC} \times (V \times I) - (P_{OUT} - P_{IN})$)
 Typical thermal resistance (Θ_{JC}) = 67°C/W
 a) For $T_C = 25^\circ\text{C}$,
 $T_J = 47^\circ\text{C} @ 5\ \text{V}$, 70 mA, $P_{OUT} = 15\ \text{dBm}$, $P_{IN} = 6\ \text{dBm}$
 b) For $T_C = 85^\circ\text{C}$,
 $T_J = 107^\circ\text{C} @ 5\ \text{V}$, 70 mA, $P_{OUT} = 15\ \text{dBm}$, $P_{IN} = 6\ \text{dBm}$

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

For further information and support please visit:
https://www.macomtech.com/content/customersupport
Evaluation Board

Application Schematic

Recommended PCB Layout

Application Information for DC & pins

For proper MAAM-011100 operation a DC voltage must be applied at the \(V_G \) (-0.5V) and \(V_D \) (+5V) pins in that order. Adjusting \(V_G \) from -0.2 V to -0.6 V will change the quiescent current which can effect power and linearity if set below or above 70 mA.

The gain of the MAAM-011100 is controlled with the \(V_C \) pin. The gain reduction is almost linear with \(V_C \) between 0 V to -2 V. Below -2 V internal ESD protection diodes will draw increasing current. The nominal open circuit voltage at the \(V_C \) pin is +1 V and produces maximum gain and power. Limiting applications and zero crossing adjustment can be done by adjusting the \(V_G \) and \(V_C \) pins together.

To bias properly, a DC voltage must be applied at the output pin. Typically this is done with a 2 element bias network that consists of a choke and a DC blocking capacitor. We recommend a ferrite bead for the main bias choke and quality capacitor for the DC block. A simple 1 KΩ resistor can be used as a RF choke for the negative \(V_G \) as applied to the input pin.

It is recommended that the total ground (common mode) inductance not exceed 0.03 nH (30 pH). This is equivalent to placing at least four 8-mil (200-µm) diameter vias under the device, assuming an 8-mil (200-µm) thick RF layer to ground.

Parts List

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C4</td>
<td>0.22 µF</td>
<td>0201</td>
</tr>
<tr>
<td>C2, C3</td>
<td>0.22 µF</td>
<td>0402</td>
</tr>
<tr>
<td>FB³</td>
<td>407 Ω</td>
<td>0402</td>
</tr>
<tr>
<td>R1</td>
<td>1 KΩ</td>
<td>0402</td>
</tr>
</tbody>
</table>

³ MACOM recommends using Murata part BLM15GG471.
Typical Performance Curves over Temperature

Gain, \(V_C = 0 \text{ V}, -2 \text{ V} \)

Return Loss

Reverse Isolation

Noise Figure

Output P1dB

Input IP3

For further information and support please visit:
https://www.macomtech.com/content/customersupport
Typical Performance Curves vs. Control Voltage

Gain

Gain values are plotted against frequency for different control voltages. The curves show how the gain changes with frequency for each control voltage level.

Noise Figure

Noise figure values are also plotted against frequency for different control voltages. The curves illustrate the noise figure performance for various control voltages.

Input Return Loss

Input return loss values are shown for different control voltages. The curves depict how the input return loss changes with frequency.

Output Return Loss

Output return loss values are plotted against frequency for different control voltages. The curves display the output return loss performance across frequency.

Output P1dB

Output P1dB values are shown for different control voltages. The curves illustrate the output P1dB performance with frequency.

Input IP3

Input IP3 values are plotted against frequency for different control voltages. The curves depict the input IP3 performance across frequency.
Typical Performance Curves

Saturated Power

Saturated Power @ 10 GHz

Gain @ 10 GHz

Noise Figure @ 10 GHz

Input IP3 @ 10 GHz

Current @ 10 GHz
Lead-Free 1.5 x 1.2 mm 6-lead TDFN

NOTES:
1. All Dimensions are in inches/mm.
2. Reference specific product outline drawing for additional dimensional and tolerance information.

1 Reference Application Note S2083 for lead-free solder reflow recommendations.
 Meets JEDEC moisture sensitivity level 1 requirements.
 Plating is matte tin over Copper.