Feature
- High Gain: 21 dB
- Output P1dB: 20 dBm
- Variable Gain with Adjustable Bias
- Lead-Free 3 mm QFN Package
- Halogen-Free “Green” Mold Compound
- RoHS* Compliant

Description
The MAAM-010651 is a 3-stage, buffer amplifier with a 20 dBm output P1dB. The surface mount 3 mm QFN package allows easy assembly. This amplifier is fully matched to 50 ohms on both the input and output. It is designed for use as an LO buffer amplifier stage or as a driver amplifier in transmit chains and is ideally suited for 38 GHz band point-to-point radios.

Each device is 100% RF tested to ensure performance compliance. The part is fabricated using an efficient PHEMT process.

The MTTF is >1,000,000 hours at a 150°C junction temperature.

Ordering Information
1. Reference Application Note M513 for reel size information.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAM-010651-000000</td>
<td>Bulk Packaging</td>
</tr>
<tr>
<td>MAAM-010651-TR0500</td>
<td>500 Piece Reel</td>
</tr>
<tr>
<td>MAAM-010651-TR1000</td>
<td>1000 Piece Reel</td>
</tr>
<tr>
<td>MAAM-010651-000SMB</td>
<td>Sample Evaluation Board</td>
</tr>
</tbody>
</table>

2. MACOM recommends connecting unused package pins to ground.

3. The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

* Restrictions on Hazardous Substances, European Union Directive 2011/65/EU
Amplifier, Buffer
37 - 40 GHz
Rev. V4

Electrical Specifications:
Freq. 37 - 40 GHz, T_B = 30°C^4, V_DD = 4 V, I_DQ = 250 mA^5, P_in = -14 dBm, Z_0 = 50 Ω

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Return Loss</td>
<td>dB</td>
<td>—</td>
<td>7</td>
<td>—</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>dB</td>
<td>—</td>
<td>10</td>
<td>—</td>
</tr>
<tr>
<td>Small Signal Gain</td>
<td>dB</td>
<td>17</td>
<td>21</td>
<td>24.5</td>
</tr>
<tr>
<td>Reverse Isolation (S12)</td>
<td>dB</td>
<td>—</td>
<td>40</td>
<td>—</td>
</tr>
<tr>
<td>Output P1dB</td>
<td>dBm</td>
<td>—</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Output IP3 (@ +4 dBm SCL)</td>
<td>dBm</td>
<td>27</td>
<td>30.5</td>
<td>—</td>
</tr>
<tr>
<td>P_SAT</td>
<td>dBm</td>
<td>19.5</td>
<td>22</td>
<td>—</td>
</tr>
</tbody>
</table>

4. T_B = MMIC Base Temperature
5. Adjust V_GG between -1.0 and -0.1 V to achieve specified I_DQ.

Maximum Operating Ratings^6,7

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>+20 dBm</td>
</tr>
<tr>
<td>Drain Supply Voltage</td>
<td>+4.3 V</td>
</tr>
<tr>
<td>Gate Supply Voltage</td>
<td>-1.5 to 0 V</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>+150 °C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-55°C to +150°C</td>
</tr>
<tr>
<td>ESD Machine Model</td>
<td>Class A</td>
</tr>
<tr>
<td>ESD Human Body Model</td>
<td>Class 1A</td>
</tr>
<tr>
<td>MSL</td>
<td>MSL3</td>
</tr>
</tbody>
</table>

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

6. Exceeding any one or combination of these limits may cause permanent damage to this device.
7. MACOM does not recommend sustained operation near these survivability limits.
Typical Performance Curves

Small signal Gain (S21)
- MAAM-010651-000000
- $V_d = 4V$, $I_{d1} = I_{d2} = 62.5mA$, $I_{d3} = 125mA$

Input Return loss (S11)
- MAAM-010651-000000
- $V_d = 4V$, $I_{d1} = I_{d2} = 62.5mA$, $I_{d3} = 125mA$

Output Return loss (S22)
- MAAM-010651-000000
- $V_d = 4V$, $I_{d1} = I_{d2} = 62.5mA$, $I_{d3} = 125mA$

Reverse Isolation (S12)
- MAAM-010651-000000
- $V_d = 4V$, $I_{d1} = I_{d2} = 62.5mA$, $I_{d3} = 125mA$

OIP3 vs Freq
- $P_{sc1}=+5dBm$; $V_{d1,2,3}=4.0V$, $I_{d1} = I_{d2} = 62.5mA$, $I_{d3} = 125mA$

C/I3 vs Freq
- $P_{sc1}=+5dBm$; $V_{d1,2,3}=4.0V$, $I_{d1} = I_{d2} = 62.5mA$, $I_{d3} = 125mA
Typical Performance Curves (cont.)

MAAM-010651-000000 : P1dB vs Freq
Vd1,2,3= 4.0V, Id1 = Id2 = 62.5mA, Id3 = 125mA

MAAM-010651-000000 : Psat vs Freq
Vd1,2,3= 4.0V, Id1 = Id2 = 62.5mA, Id3 = 125mA

MAAM-010651-000000 : MTTF hours vs. Package Base Temperature
Vd1,2,3= 4V; Id1=Id2=62.5mA, Id3=125mA

MAAM-010651-000000 : Tch(max) vs. Package Base Temperature
Vd1,2,3= 4V; Id1=Id2=62.5mA, Id3=125mA

MAAM-010651-000000 : Operating Power De-rating Curve (continuous)

Visit www.macom.com for additional data sheets and product information.
App Note [1] Biasing - It is recommended to bias the amplifier with $V_D = 4 \text{ V}$ and $I_{D\text{TOTAL}} = 250 \text{ mA}$. It is also recommended to use active biasing to keep the currents constant as the RF power and temperature vary; this gives the most reproducible results. Depending on the supply voltage available and the power dissipation constraints, the bias circuit may be a single transistor or a low power operational amplifier, with a low value resistor in series with the drain supply used to sense the current. The gate of the pHEMT is controlled to maintain correct drain current and thus drain voltage. The typical gate voltage needed to do this is -0.3 V. Typically the gate is protected with Silicon diodes to limit the applied voltage. Also, make sure to sequence the applied voltage to ensure negative gate bias is available before applying the positive drain supply.

App Note [2] Bias Arrangement - Each DC pin (V_D and V_G) needs to have DC bypass capacitance (100 pF/10 nF/1 µF) as close to the package as possible.

Lead-Free 3 mm QFN Package
Amplifier, Buffer
37 - 40 GHz

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc (“MACOM”) products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM’s Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.