Variable Gain Amplifier with Analog Control
400 - 2700 MHz

Features
- Wide Frequency Range
- +42 dBm Output IP3
- 25.5 dB Gain at 2140 MHz
- 26.5 dB Attenuation Range
- Lead-Free 4 mm, 24-Lead PQFN Package
- RoHS* Compliant and 260°C Reflow Compatible

Description
The MAAM-009320 is a variable gain amplifier with 26.5 dB of gain control at 2.14 GHz. It has good input IP3 performance over the full attenuation range. External matching components are used to set the center frequency and achieve the return loss performance. The analog control is accomplished through a single control pin of 0 to +3V.

The 4 mm PQFN package is RoHS compliant and compatible with reflow temperatures to 260°C. Applications include transceivers for cellular infrastructure.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAM-009320-TR3000</td>
<td>3000 piece reel</td>
</tr>
<tr>
<td>MAAM-009320-001SMB</td>
<td>Sample Board, 2140 MHz</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.
2. All sample boards include 5 loose parts.

Pin Configuration

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Function</th>
<th>Pin No.</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V_{CNTRL}</td>
<td>13</td>
<td>N/C</td>
</tr>
<tr>
<td>2</td>
<td>+3V</td>
<td>14</td>
<td>RF$_{\text{OUT}}$/+5V</td>
</tr>
<tr>
<td>3</td>
<td>+5V</td>
<td>15</td>
<td>N/C</td>
</tr>
<tr>
<td>4</td>
<td>N/C</td>
<td>16</td>
<td>N/C</td>
</tr>
<tr>
<td>5</td>
<td>RF$_{\text{IN}}$</td>
<td>17</td>
<td>N/C</td>
</tr>
<tr>
<td>6</td>
<td>N/C</td>
<td>18</td>
<td>N/C</td>
</tr>
<tr>
<td>7</td>
<td>N/C</td>
<td>19</td>
<td>N/C</td>
</tr>
<tr>
<td>8</td>
<td>N/C</td>
<td>20</td>
<td>Interstage</td>
</tr>
<tr>
<td>9</td>
<td>N/C</td>
<td>21</td>
<td>N/C</td>
</tr>
<tr>
<td>10</td>
<td>N/C</td>
<td>22</td>
<td>Interstage</td>
</tr>
<tr>
<td>11</td>
<td>N/C</td>
<td>23</td>
<td>N/C</td>
</tr>
<tr>
<td>12</td>
<td>N/C</td>
<td>24</td>
<td>N/C</td>
</tr>
<tr>
<td>25</td>
<td>Paddle4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. For optimum RF performance, all N/C’s should be terminated to ground.
4. The exposed pad centered on the package bottom must be connected to RF and DC ground.

Variable Gain Amplifier with Analog Control
400 - 2700 MHz

Electrical Specifications\(^5,6,7\): Freq. = 2140 MHz, \(T_A = +25^\circ \text{C} \), \(Z_0 = 50 \Omega \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>dB</td>
<td>24</td>
<td>25.5</td>
<td>—</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>dB</td>
<td>—</td>
<td>3.0</td>
<td>—</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>dB</td>
<td>—</td>
<td>13</td>
<td>—</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>dB</td>
<td>—</td>
<td>12</td>
<td>—</td>
</tr>
<tr>
<td>Output P1dB</td>
<td>dBm</td>
<td>—</td>
<td>28</td>
<td>—</td>
</tr>
<tr>
<td>Output IP3 (P_{out} = +9 \text{ dBm per tone SCL, 1 MHz spacing})</td>
<td>dBm</td>
<td>40</td>
<td>42</td>
<td>—</td>
</tr>
<tr>
<td>Attenuation Range</td>
<td>V</td>
<td>25</td>
<td>26.5</td>
<td>—</td>
</tr>
<tr>
<td>Attenuation Control</td>
<td>mA</td>
<td>—</td>
<td>0 to 3</td>
<td>—</td>
</tr>
<tr>
<td>Small Signal Current</td>
<td>mA</td>
<td>—</td>
<td>231</td>
<td>300</td>
</tr>
</tbody>
</table>

5. Contact M/A-COM Technology Solutions’ Application Engineering Department for performance and tuning at other frequencies within frequency range.
6. Typical performance at no attenuation, \(V_{cntrl} = 0 \text{V} \).
7. Typical small signal currents are 76 mA for stage 1 and 155 mA for stage 3.

Absolute Maximum Ratings\(^8,9\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>(+6 \text{ dBm})</td>
</tr>
<tr>
<td>Voltage (all DC pins)</td>
<td>6 volts</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>(-55^\circ \text{C to +150^\circ C})</td>
</tr>
<tr>
<td>Case Temperature</td>
<td>(-40^\circ \text{C to +85^\circ C})</td>
</tr>
<tr>
<td>Junction Temp, Stage 1 (^{10,11})</td>
<td>150°C</td>
</tr>
<tr>
<td>Junction Temp, Stage 3 (^{10,12})</td>
<td>160°C</td>
</tr>
</tbody>
</table>

8. Exceeding any one or combination of these limits may cause permanent damage to this device.
9. M/A-COM Technology Solutions does not recommend sustained operation near these survivability limits.
10. Junction Temperature \((T_J) = T_A + \Theta_{jc} \times ((V + I) - (P_{OUT} - P_{IN})) \)
11. Stage 1 typical thermal resistance \((\Theta_{jc}) = 106.5^\circ \text{C/W} \)
12. Stage 3 typical thermal resistance \((\Theta_{jc}) = 68.6^\circ \text{C/W} \)

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these class 1A devices.

For further information and support please visit:
https://www.macom.com/support
Variable Gain Amplifier with Analog Control
400 - 2700 MHz

Typical Performance Curves:

Gain, Vcntrl = 0V

Attenuation Range

Gain vs. Control Voltage

Reverse Isolation, Vcntrl = 0V

Input Return Loss

Output Return Loss

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com/support for additional data sheets and product information.
Variable Gain Amplifier with Analog Control
400 - 2700 MHz

Typical Performance Curves:

Output IP3, Vcntrl = 0V

Input IP3 vs. Control Voltage

Output P1dB, Vcntrl = 0V

Input P1dB vs. Control Voltage

Noise Figure, Vcntrl = 0V

Noise Figure vs. Control Voltage
Variable Gain Amplifier with Analog Control
400 - 2700 MHz

2140 MHz PCB Layout

Parts List

<table>
<thead>
<tr>
<th>Part</th>
<th>Value</th>
<th>Case Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>68 pF</td>
<td>0402</td>
</tr>
<tr>
<td>C2, C4, C5, C8</td>
<td>1000 pF</td>
<td>0402</td>
</tr>
<tr>
<td>C3, C9</td>
<td>0.1 µF</td>
<td>0402</td>
</tr>
<tr>
<td>C6</td>
<td>12 pF</td>
<td>0402</td>
</tr>
<tr>
<td>C7</td>
<td>2.2 pF</td>
<td>0402</td>
</tr>
<tr>
<td>C10</td>
<td>1.5 pF</td>
<td>0402</td>
</tr>
<tr>
<td>C11</td>
<td>39 pF</td>
<td>0402</td>
</tr>
<tr>
<td>L1</td>
<td>39 nH</td>
<td>0402</td>
</tr>
<tr>
<td>L2</td>
<td>7.5 nH</td>
<td>0402</td>
</tr>
<tr>
<td>L3</td>
<td>3.9 nH</td>
<td>0402</td>
</tr>
</tbody>
</table>

2140 MHz Schematic

Cross Section View

Overall Thickness - Excluding Soldermask: .058” +/- .003”

Lead Free 4 mm 24-Lead PQFN †

† Reference Application Note M538 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 1 requirements.
Plating is 100% matte tin over copper.

MAAM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.
Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support
Variable Gain Amplifier with Analog Control
400 - 2700 MHz

400 MHz Applications Section

Schematic

Parts List

<table>
<thead>
<tr>
<th>Part</th>
<th>Value</th>
<th>Case Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C11</td>
<td>39 pF</td>
<td>0402</td>
</tr>
<tr>
<td>C2, C4, C5, C8</td>
<td>1000 pF</td>
<td>0402</td>
</tr>
<tr>
<td>C3, C9</td>
<td>0.1 µF</td>
<td>0402</td>
</tr>
<tr>
<td>C6</td>
<td>4.7 pF</td>
<td>0402</td>
</tr>
<tr>
<td>C7</td>
<td>4 pF</td>
<td>0402</td>
</tr>
<tr>
<td>C10</td>
<td>18 pF</td>
<td>0402</td>
</tr>
<tr>
<td>L1</td>
<td>39 nH</td>
<td>0402</td>
</tr>
<tr>
<td>L2</td>
<td>7.5 nH</td>
<td>0402</td>
</tr>
<tr>
<td>L3</td>
<td>3.9 nH</td>
<td>0402</td>
</tr>
<tr>
<td>L4</td>
<td>12 nH</td>
<td>0402</td>
</tr>
</tbody>
</table>

Gain, $V_{cntrl} = 0V$

Attenuation Range

Gain, $V_{cntrl} = 0V$

Attenuation Range

Gain (dB) vs Frequency (GHz)

Attenuation (dB) vs Frequency (GHz)
Variable Gain Amplifier with Analog Control
400 - 2700 MHz

400 MHz Applications Section

Input Return Loss

Output Return Loss

Output IP3, Vcntrl = 0V

Input IP3 vs. Control Voltage

Output P1dB, Vcntrl = 0V

Input P1dB vs. Control Voltage

MAAM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support
Variable Gain Amplifier with Analog Control
400 - 2700 MHz

850 MHz Applications Section

Schematic

Parts List

<table>
<thead>
<tr>
<th>Part</th>
<th>Value</th>
<th>Case Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C11</td>
<td>39 pF</td>
<td>0402</td>
</tr>
<tr>
<td>C2, C4, C5, C8</td>
<td>1000 pF</td>
<td>0402</td>
</tr>
<tr>
<td>C3, C9</td>
<td>0.1 µF</td>
<td>0402</td>
</tr>
<tr>
<td>C6</td>
<td>4.7 pF</td>
<td>0402</td>
</tr>
<tr>
<td>C7</td>
<td>1.2 pF</td>
<td>0402</td>
</tr>
<tr>
<td>C10</td>
<td>6.8 pF</td>
<td>0402</td>
</tr>
<tr>
<td>L1</td>
<td>39 nH</td>
<td>0402</td>
</tr>
<tr>
<td>L2</td>
<td>7.5 nH</td>
<td>0402</td>
</tr>
<tr>
<td>L3</td>
<td>1 nH</td>
<td>0402</td>
</tr>
<tr>
<td>L4</td>
<td>10 nH</td>
<td>0402</td>
</tr>
</tbody>
</table>

Gain, Vcntrl = 0V

Attenuation Range
Variable Gain Amplifier with Analog Control

400 - 2700 MHz

850 MHz Applications Section

Input Return Loss

Output Return Loss

Output IP3, Vcntrl = 0V

Input IP3 vs. Control Voltage

Output P1dB, Vcntrl = 0V

Input P1dB vs. Control Voltage

MAAM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support
Variable Gain Amplifier with Analog Control
400 - 2700 MHz

2600 MHz Applications Section

Schematic

Gain, Vcntrl = 0V

Parts List

<table>
<thead>
<tr>
<th>Part</th>
<th>Value</th>
<th>Case Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>3.9 pF</td>
<td>0402</td>
</tr>
<tr>
<td>C2, C4, C5, C8</td>
<td>1000 pF</td>
<td>0402</td>
</tr>
<tr>
<td>C3, C9</td>
<td>0.1 µF</td>
<td>0402</td>
</tr>
<tr>
<td>C6</td>
<td>6.8 pF</td>
<td>0402</td>
</tr>
<tr>
<td>C7</td>
<td>1.2 pF</td>
<td>0402</td>
</tr>
<tr>
<td>C10</td>
<td>1 pF</td>
<td>0402</td>
</tr>
<tr>
<td>L1</td>
<td>39 nH</td>
<td>0402</td>
</tr>
<tr>
<td>L2</td>
<td>7.5 nH</td>
<td>0402</td>
</tr>
<tr>
<td>L3</td>
<td>1.8 nH</td>
<td>0402</td>
</tr>
<tr>
<td>L4</td>
<td>3.9 nH</td>
<td>0402</td>
</tr>
</tbody>
</table>

Attenuation Range
Variable Gain Amplifier with Analog Control
400 - 2700 MHz

2600 MHz Applications Section

Input Return Loss

Output Return Loss

Output IP3, Vcntrl = 0V

Input IP3 vs. Control Voltage

Output P1dB, Vcntrl = 0V

Input P1dB vs. Control Voltage

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support