Low Noise Amplifier 5 - 6 GHz

MAAL-FR0004

Rev. V1

Features

Gain: 28 dB

Output P1dB: 14.7 dBm
Noise Figure: 1.25 dB
Reverse isolation: 50 dB
Input return Loss: -17 dB
Output return Loss: -15 dB
Lead-Free 4 mm 24-Lead PQFN

RoHS* Compliant

Applications

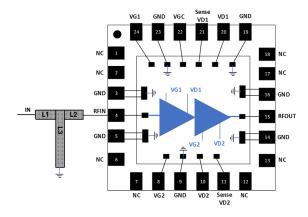
C-Band Active antennas

General Purpose

Description

The MAAL-FR0004 is a high gain, low noise figure MMIC amplifier operating from 5 to 6 GHz designed for use with the integrated core chip, attenuator/phase shifter chip set or as general purpose low noise amplifier in band C and packaged in a 4 mm 24-lead Plastic QFN.

MAAL-FR0004 uses a simple external matching circuit to provide excellent input matching between 5 and 6 GHz.


The MMIC is manufactured with a 0.18 µm PHEMT GaAs MMIC technology.

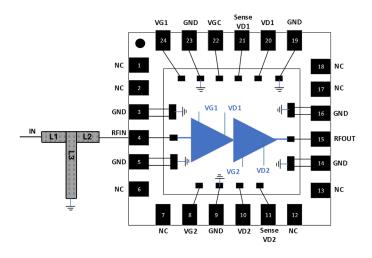
Ordering Information^{1,2}

Part Number	Package
MAAL-FR0004-TR0500	500 Part Reel
MAAL-FR0004-001SMB	Sample Board

- 1. Reference Application Note M513 for reel size information.
- 2. MAAL-FR0004 also exists in die form: CGY2178UH/C1.

Functional Schematic

Pin Configuration^{3,4}


Pin#	Function	Description	
1,2,6,7,12, 13,17,18	NC	Not Connected	
3,5,9,14, 16,19,23	GND	Ground	
4	RFIN	RF Package Input	
8	VG2	Gate Supply 2	
10	VD2	Drain Supply 2	
11	Sense VD2	Possibility to Sense VD2	
15	RFOUT	RF Output	
20	VD1	Drain Supply 1	
21	Sense VD1	Possibility to Sense VD1	
22	VGC	Cascode Bias Stage 1	
24	VG1	Gate Supply 1	
Paddle	GND⁴	Ground Paddle	

- MACOM recommends connecting unused package pins to ground.
- The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Pin Configuration and Functional Descriptions

Pin#	Pin Name	Description	
1,2,6,7,12,13,17,18	NC	These pins are not connected internally. It is recommended these are grounded on the application PCB.	
3,5,9,14,16,19,23	GND	Pins connected to GND	
4	RFIN	RF Signal Input. This pad is matched to 50 Ω using an external T-matching circuit and is AC coupled.	
8	VG2	Gate bias 2. For bypassing 100 nF capacitors are recommended.	
10,11	VD2, Sense VD2	Drain bias 2. For bypassing 100 nF capacitors are recommended. Sense VD2 is connected internally to VD2, the purpose is to offer the possibility to sense VD2.	
15	RFOUT	RF Signal Output. This pad is matched to 50 Ω and is AC coupled.	
20, 21	VD1, Sense VD1	Drain bias 1. For bypassing 100 nF capacitors are recommended. Sense VD1 is connected internally to VD1, the purpose is to offer the possibility to sense VD1.	
22	VGC	To bias the cascode of 1st stage, it should be connected to VD1 on the board.	
24	VG1	Gate bias 1. For bypassing 100 nF capacitors are recommended.	
Paddle	GND	RF, DC and thermal ground	

MAAL-FR0004

Rev. V1

Electrical Specifications: Measured on Reference Board, Freq. = 5 - 6 GHz, Z_0 = 50 Ω , VD1 = VD2 = 3 V, T_A = 25°C, Quiescent Bias Currents (ID₁ = 10 mA ID₂ = 30 mA)

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Gain	5.0 GHz 5.5 GHz 6.0 GHz	dB	28 26 24	30 28 26	_
Noise Figure	5.5 GHz	dB	_	1.25	1.6
Reverse Isolation	5.5 GHz	dB	_	45	_
Output P1dB	5.5 GHz @ P _{IN} = -12.3 dBm	dBm	_	14.7	_
Input Return Loss	5.5 GHz	dB	_	-17	_
Output Return Loss	5.5 GHz	dB	_	-15	_

Absolute Maximum Ratings^{5,6}

Parameter	Absolute Maximum	
Input Power	5 dBm	
Gate Voltage	-6 to 0 V	
Drain Voltage	0 to +6 V	
Drain current	40 mA (stage 1) 60 mA (stage 2)	
Gate current	10 mA	
Junction Temperature ^{7,8}	+150 °C	
Operating Temperature	-40 °C to + 85 °C	
Storage Temperature	-55 °C to + 150 °C	

- Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- 7. Operating at nominal conditions with $T_J \le +200^{\circ}C$ will ensure MTTF > 1 x 10^9 hours.
- 8. Junction Temperature $(T_J) = T_C + \Theta jc * (V * I)$
 - a) For $T_C = +25^{\circ}C$,

Typical thermal resistance (Θjc) = 116.06 °C/W.

 $T_J = 35.4 \, ^{\circ}\text{C} \ @ \ 3 \, \text{V}, \ 30 \, \text{mA}$

b) For $T_{\rm C} = +85^{\circ}{\rm C}$,

Typical thermal resistance (Θ jc) = 139.11 °C/W. T_J = 97.5 °C @ 3 V, 30 mA

Handling Procedures

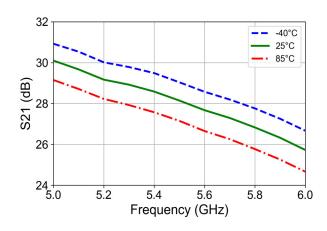
Please observe the following precautions to avoid damage:

Static Sensitivity

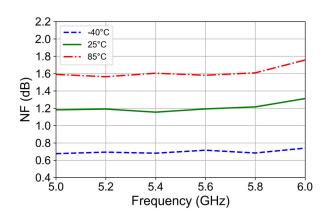
These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Operating the MAAL-FR0004 Turn-on

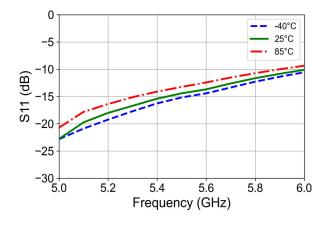
- 1. Apply VG1 = VG2 = -1.5 V
- 2. Increase VD1 = VD2 to 3 V.
- Set ID1 = 10 mA and ID2 = 30 mA by adjusting VG1 and VG2 more positive.
- 4. Apply RFIN signal.

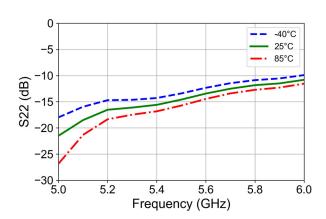

Turn-off

- 1. Remove RFIN signal.
- 2. Decrease VG1 and VG2 to -1.5 V
- 3. Decrease VDD to 0 V.

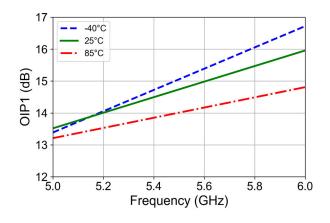


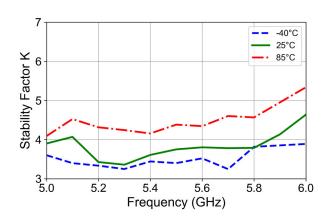
Typical Performance Curves: @ PCB level with De-Embedding, VD1 = VD2 = 3 V, TA = 25°C, Quiescent Bias Currents (ID_1 = 10 mA ID_2 = 30 mA)


Gain over Frequency

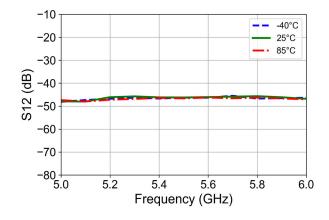

Noise Figure over Frequency

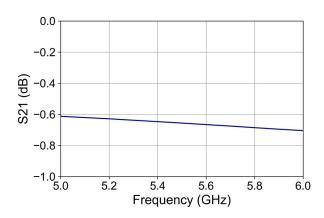
Input Return Loss over Frequency


Output Return Loss over Frequency



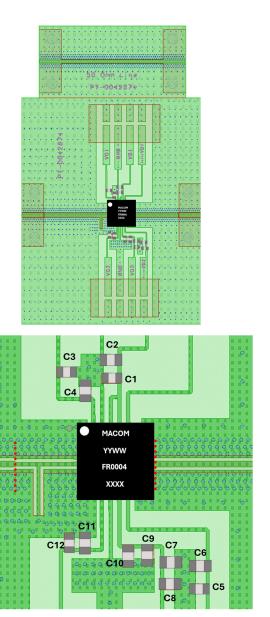
Typical Performance Curves: @ PCB level with De-Embedding, VD1 = VD2 = 3 V, TA = 25°C, Quiescent Bias Currents (ID_1 = 10 mA ID_2 = 30 mA)


Output 1dB Compression Power over Frequency

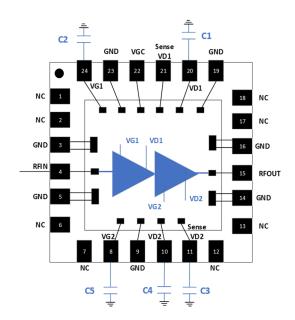

Stability Factor over Frequency

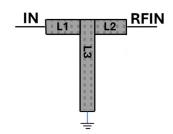
Reverse Isolation over Frequency

Access Line & Connector Losses over Frequency



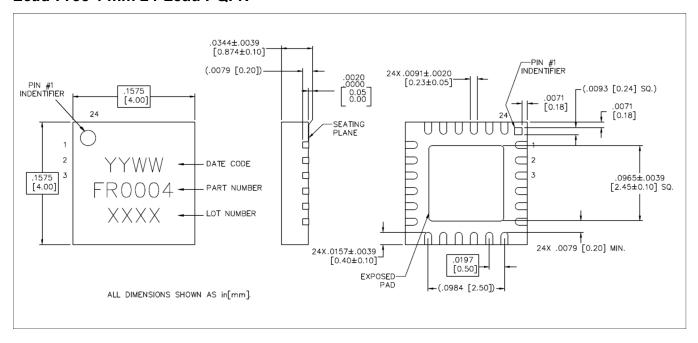
MAAL-FR0004


Rev. V1


Reference Board

Red dashed lines indicate the reference planes at RFIN and RFOUT.

Application Schematic


Dimensions are given for Rogers RO4003 substrate material. (Height = 185 $\mu m,\, Er$ = 3.4)

Component	Length (µm)	Width (µm)	Gap (µm)
L1	1170	200	200
L2	1603	200	200
L3	3033	200	200

Part	Value	Case Style	Manufacturer	Manufacturer's Part #
C1, C3, C5, C8, C12	100 nF	0402	KYOCERA AVX	0402YD104KAT2A
C2, C4, C6, C7, C9, C10, C11	NA	0402	NA	NA

Lead-Free 4 mm 24-Lead PQFN

[†] Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements. Plating is 100% matte tin over copper.

Revision History

Rev	Date	Change Description
V1	12/12/25	Initial Release

Low Noise Amplifier 5 - 6 GHz

MAAL-FR0004

Rev. V1

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.