Ka Band, Low Noise Amplifier 15 - 24 GHz

MAAL-011286

Rev. V1

Features

Low Noise Figure: 1.5 dB @ 20 GHz

Gain: 27 dB @ 20 GHz
 P1dB: 19 dBm @ 20 GHz
 OIP3: 29 dBm @ 20 GHz
 Bias Voltage: V_{DD} = +3.5 V
 Bias Current: I_{DSQ} = 90 mA
 50 Ω Matched Input and Output
 3 mm AQFN-12LD Package

RoHS* Compliant

Applications

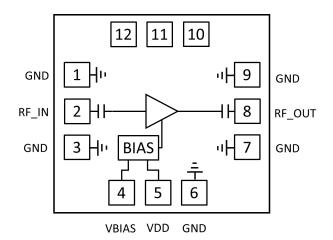
- Satellite Communications
- Low Earth Orbit Space Payloads
- · GEO High Throughput Satellite
- Radar
- EW

Description

The MAAL-011286 is an easy to use low noise amplifier. It operates from 15 to 24 GHz and provides 1.5 dB noise figure, 27 dB gain and a P1dB of +19 dBm. The input and output are fully matched to $50~\Omega$ with typical return loss >12 dB.

This product is fabricated using a GaAs pHEMT process which features full passivation for enhanced reliability.

This amplifier can be used as a low noise amplifier stage or as a driver stage in higher power applications. This device is ideally suited for Ka-band downlink satellite communication systems.


The MAAL-011286 is also available in die form under MAAL-011286-DIE part number.

Ordering Information¹

Part Number	Package
MAAL-011286-TR1000	1000 Piece Reel
MAAL-011286-TR3000	3000 Piece Reel
MAAL-011286-SB1	Sample Board

1. Reference Application Note M513 for reel size information.

Functional Schematic

Pin Configuration

Pin#	Function	Description
1,3,6,7,9	GND	Ground
2	RF _{IN}	RF Input
4	VBIAS	Bias Voltage
5	VDD	Drain Supply
8	RF _{OUT}	RF Output
10,11,12	NC	Not Connected ²
Paddle	GND ³	Gound pad

- 2. These pins are not connected internally. MACOM recommends these are grounded on the application PCB.
- The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Rev. V1

Electrical Specifications: $T_A = 25$ °C, $V_D = +3.5$ V, $I_{DSQ} = 90$ mA, $Z_0 = 50$ Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Small Signal Gain	P _{IN} = -30 dBm 17.0 GHz 21.5 GHz	dB	24 25	27 28	_
Small Signal Gain Variation over Temperature	_	dB/°C		0.06	_
Gain Flatness	_	dB	_	0.7	_
Noise Figure	19.25 GHz	dB		1.5	2
Input Return Loss		dB		12	_
Output Return Loss		dB		12	_
P1dB	17.0 GHz 21.5 GHz	dBm	16.5 17	19 19.5	_
Output 3rd Order Intercept	-20 dBm / tone, 10 MHz spacing	dBm	_	29	_
Supply Current	_	mA	_	90	_

Maximum Operating Conditions

Parameter	Maximum
Input Power	0 dBm
V_{DD}	4.5 V
Junction Temperature ^{6,7}	+150°C
Operating Temperature	-40°C to +85°C

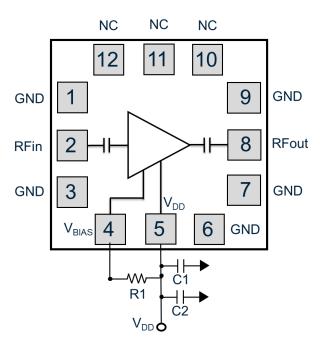
Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1A HBM (250 V), Class C2a CDM (500 V) devices.

Absolute Maximum Ratings^{4,5}


Parameter	Absolute Maximum
Input Power	20 dBm
V _{DD}	5 V
Junction Temperature ^{6,7}	+150°C
Operating Temperature	-40°C to +85°C
Storage Temperature	-65°C to +125°C

- 4. Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- Operating at nominal conditions with T_J ≤ +150°C will ensure MTTF > 1 x 10⁶ hours.
- Junction Temperature (T_J) = T_C + Θjc * (V * I)
 Typical thermal resistance (Θjc) = 66.5 °C/W.
 a) For TC = +25°C,
 - TJ = 50.6 °C @ 3.5 V, 110 mA b) For TC = +85°C,
 - TJ = 110.6 °C @ 3.5 V, 110 mA

Rev. V1

Application Schematic

Parts List

Part	Value	Case Style
C1	100 pF	0402
C2	0.1 μF	0402
R1	_	0402

Application Circuit and Operation

The basic application circuit is shown below. Place C1 capacitor as close to the MMIC as physically possible. The position of the C2 capacitor is not as critical but should also be placed as closely as practically possible.

Set IDQ by adjusting R1

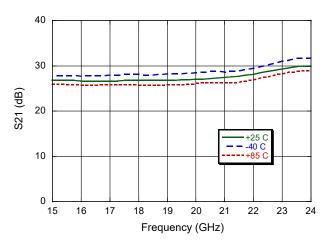
Value of R1 sets IDQ according to the table below:

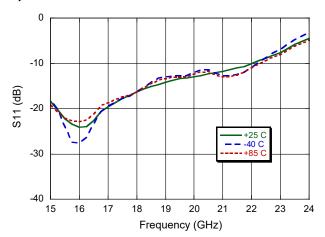
R1 (Ω)	IDQ (mA)
6.55K	45
5.15K	50
3.62K	60
2.65K	70
2.05k	80
1.65k	90
1.34K	100
1.12K	110
970	120

Operating the MAAL-011286 Turn-on

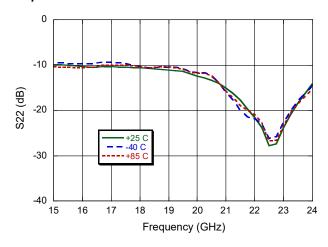
- 1. Apply V_D (+3.5 V)
- 2. Apply RF_{IN} signal

Turn-off


- 1. Remove RF_{IN} signal.
- 2. Decrease V_D to 0 V

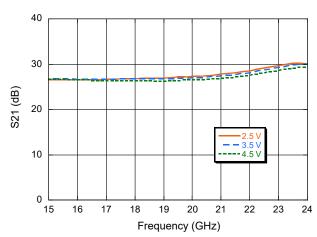

Rev. V1

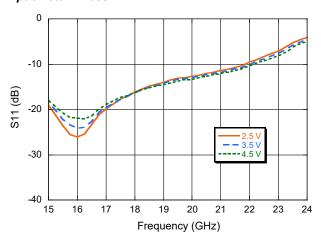
Typical Performance Curves @ V_D = 3.5 V, I_D = 90 mA, Z_0 = 50 Ω


Gain

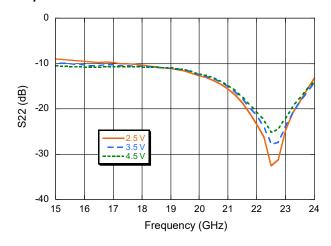
Input Return Loss

Output Return Loss



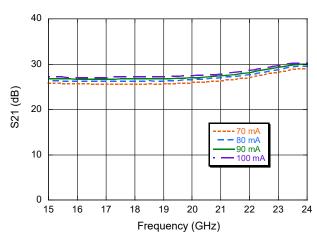

Rev. V1

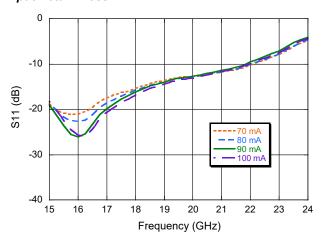
Typical Performance Curves @ I_D = 90 mA, Z_0 = 50 Ω


Gain

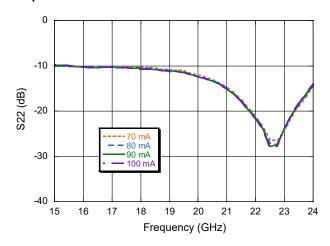
Input Return Loss

Output Return Loss



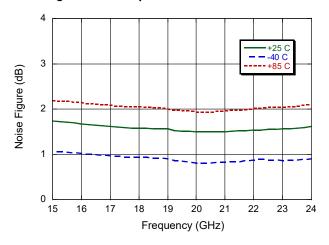

MAAL-011286 Rev. V1

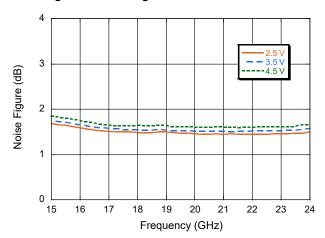
Typical Performance Curves @ V_D = 3.5 V, Z_0 = 50 Ω


Gain

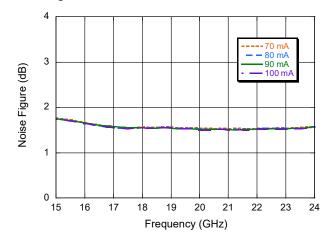
Input Return Loss

Output Return Loss



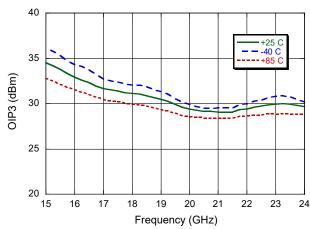

Rev. V1

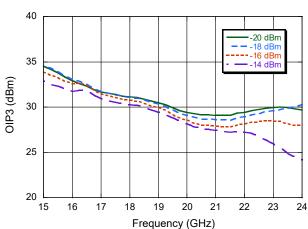
Typical Performance Curves @ V_D = 3.5 V, I_D = 90 mA, 25 C, Z_0 = 50 Ω


Noise Figure over Temperature

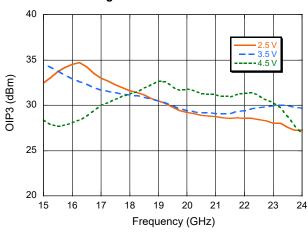
Noise Figure over Voltage

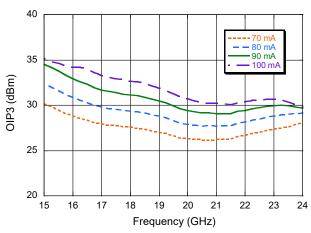
Noise Figure over Current

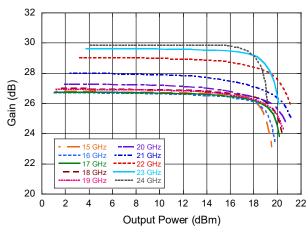


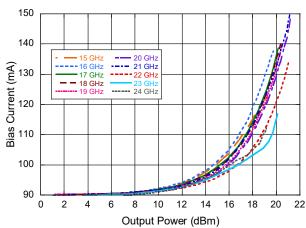

MAAL-011286 Rev. V1

Typical Performance Curves @ V_D = 3.5 V, I_D = 90 mA, Pin = -20 dBm, 25 C, Z_0 = 50 Ω


OIP3 vs Temperature


OIP3 vs Pin


OIP3 vs Bias Voltage

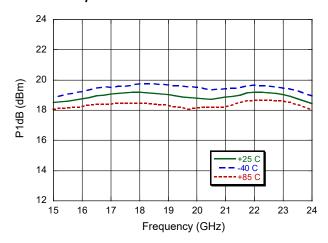

OIP3 vs Bias Current

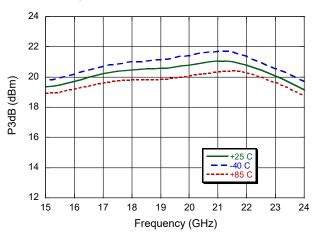
Gain vs Output Power over Frequency

Bias Current vs Output Power over Frequency

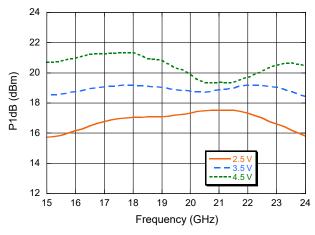
8

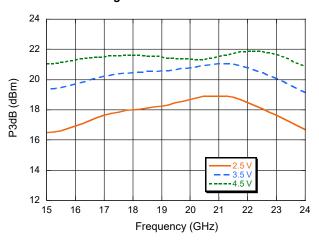
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

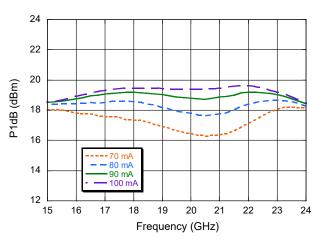

Visit www.macom.com for additional data sheets and product information.

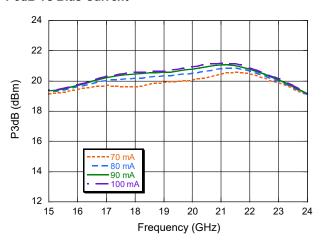

Rev. V1

Typical Performance Curves @ V_D = 3.5 V, I_D = 90 mA, 25 C, Z_0 = 50 Ω


P1dB vs Temperature


P3dB vs Temperature


P1dB vs Bias Voltage


P3dB vs Bias Voltage

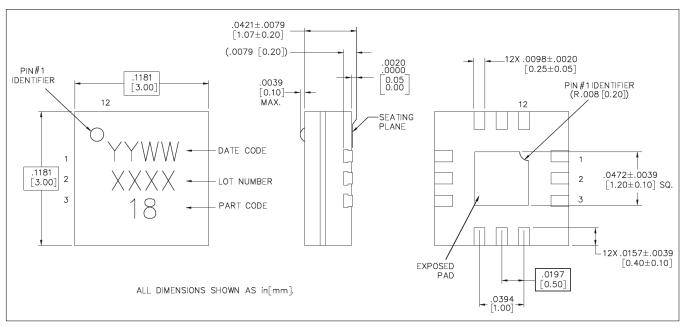
P1dB vs Bias Current

P3dB vs Bias Current

9

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.


Ka Band, Low Noise Amplifier 15 - 24 GHz

MAAL-011286

Rev. V1

Outline: Lead-Free 3 mm AQFN-12LD 8,9,10,11,12

- 8. All units are in [mm], unless otherwise noted, with a tolerance of $xxxx = \pm .0005$ in and $xxx = \pm .005$ in.
- 9. Lead finish: NiPdAu plating
- Marking: line 2 part number; line 3 wafer lot number; line 4 c = country of origin (T = Thailand), yyww = date code, N = Nickel/Palladium/ Gold plating
- 11. Reference Application Note S2083 for lead-free solder reflow recommendations.
- 12. Meets JEDEC moisture sensitivity level 3 requirements.

Ka Band, Low Noise Amplifier 15 - 24 GHz

MAAL-011286

Rev. V1

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.