Ka Band, Low Noise Amplifier 17.0 - 21.5 GHz

MAAL-011286-DIE Rev. V1

Features

Low Noise Figure: 1.4 dB

Gain: 26 dBP1dB: 19 dBmOIP3: 30 dBm

Bias Voltage: V_{DD} = +3.5 V
 Bias Current: I_{DSQ} = 90 mA
 50 Ω Matched Input and Output
 1.38 mm x 0.78 mm x 0.1 mm DIE

RoHS* Compliant

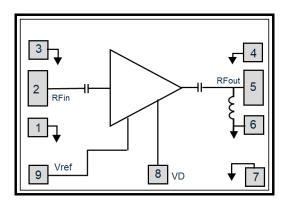
Applications

- Satellite communications
- Radar
- EW

Description

The MAAL-011286-DIE is an easy to use low noise amplifier. It operates from 17.0 to 21.5 GHz and provides 1.4 dB noise figure, 26 dB gain and a P1dB of +19 dBm. The input and output are fully matched to $50~\Omega$ with typical return loss >12 dB.

This product is fabricated using a GaAs pHEMT process which features full passivation for enhanced reliability.


The MAAL-011286-DIE can be used as a low noise amplifier stage or as a driver stage in higher power applications. This device is ideally suited for Kaband downlink satellite communication systems.

The MAAL-011286-DIE is also available in package form in standard QFN package under MAAL-011286 part number.

Ordering Information

Part Number	Package	
MAAL-011286-DIE	Bulk	

Functional Schematic

Pin Configuration¹

Pad #	Function	Description	
1,3,4,6,7	GND	Ground	
2	RF _{IN}	RF Input	
5	RF _{OUT}	RF Output	
8	VD	Drain Voltage	
9	Vref	Bias Voltage	

The backside of the die must be connected to RF, DC and thermal ground.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Electrical Specifications: Freq. = 17.0 - 21.5 GHz, $T_A = 25^{\circ}C$, $V_D = +3.5 \text{ V}$, $Z_0 = 50 \Omega$

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Small Signal Gain	P _{IN} = -30 dBm 17.0 GHz 21.5 GHz	dB	23 24	27 28	_
Small Signal Gain Variation over Temperature	_	dB/°C	_	0.06	_
Gain Flatness	_	dB	_	0.7	_
Noise Figure	_	dB	_	1.3	2
Input Return Loss	_	dB	_	15	_
Output Return Loss	_	dB	_	15	_
P1dB	17.0 GHz 21.5 GHz	dBm	16.5 16	19 18.5	_
Output 3rd Order Intercept	_	dBm	_	30	_
Supply Current	_	mA	_	90	_

Absolute Maximum Ratings^{2,3}

Parameter	Absolute Maximum	
Input Power	20 dBm	
V _D	5 V	
Junction Temperature ^{4,5}	+150°C	
Operating Temperature	-40°C to +85°C	
Storage Temperature	-65°C to +125°C	

- 2. Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- 4. Operating at nominal conditions with $T_J \le +150 ^{\circ} C$ will ensure MTTF > 1 x 10^6 hours.
- 5. Junction Temperature (T_J) = T_C + Θjc * (V * I)
 Typical thermal resistance (Θjc) = 65.4 °C/W.
 a) For T_C = +25°C,
 T_J = 50.2 °C @ 3.5 V, 110 mA
 b) For T_C = +85°C,
 T_J = 110.2 °C @ 3.5 V, 110 mA

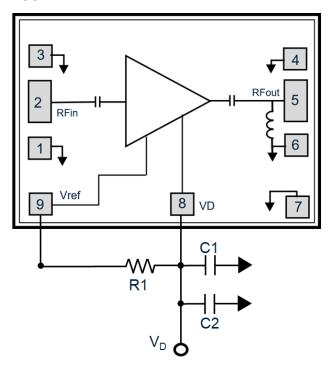
Maximum Operating Conditions

Parameter	Maximum
Input Power	0 dBm
V_{DD}	4.5 V
Junction Temperature ^{6,7}	+150°C
Operating Temperature	-40°C to +85°C

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity


These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1A HBM (250 V) devices.

MAAL-011286-DIE

Rev. V1

Application Schematic

Parts List

Part	Value	Case Style
C1	100 pF	Chip capacitor
C2	0.1 μF	0402
R1	900 Ohm	0402

Operating the MAAL-011286-DIE Turn-on

- 1. Apply V_D (+3.5 V)
- 2. Set I_{DQ} (90 mA) by adjusting R1
- 3. Apply RF_{IN} signal

Turn-off

- 1. Remove RF_{IN} signal
- Decrease V_D to 0 V

Application Circuit and Operation

The basic application circuit is shown below. Place C1 capacitor as close to the MMIC as physically possible. The position of the C2 capacitor is not as critical but should also be placed as closely as practically possible.

Set IDQ by adjusting R1

The value of R1 sets IDQ according to the table below:

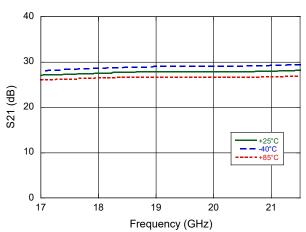
R1 (Ω)	IDQ (mA)
6.55K	45
5.15K	50
3.62K	60
2.65K	70
2.05k	80
1.65k	90
1.34K	100
1.12K	110
970	120

Die Attach

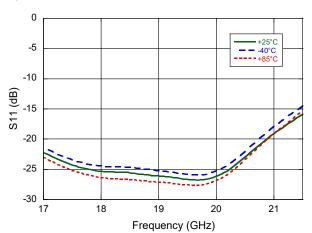
For mounting the die either an electrically conductive epoxy, or an AuSn eutectic preform can be used.

If using eutectic, an 80% Au / 20% Sn preform is recommended.

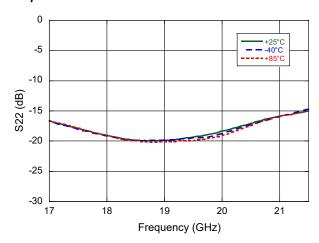
Wire Bonding


The loop height of the RF bonds should be minimized. Where the die is mounted above the PCB, it is recommended to use Reverse Ball-Stitch-on-Ball bonds (BSOB). If the die is mounted inside a cavity on the board, forward loop bonding may result in a lower loop height. V-shape RF bond with two wires (diameter = $25 \mu m$) is recommended for optimum RF performance. RF bond wire length to be minimized to reduce the inductance effect.

Alternatively, a 3 mil bond ribbon could be used.

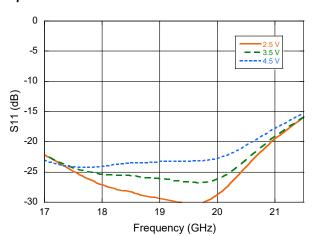


Typical Performance Curves over Temperature @ V_D = 3.5 V, I_D = 90 mA, Z_0 = 50 Ω

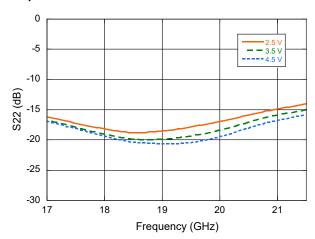

Gain

Input Return Loss

Output Return Loss



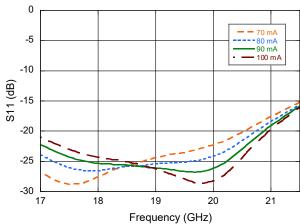
Typical Performance Curves over Voltage @ I_D = 90 mA, +25°C, Z_0 = 50 Ω

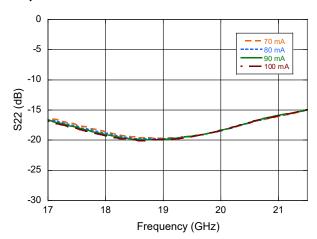

Gain 40 30 10 10 17 18 19 20 21

Frequency (GHz)

Input Return Loss

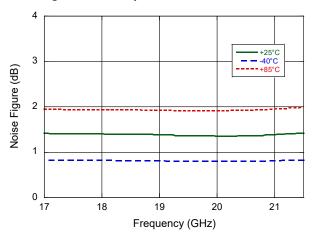
Output Return Loss

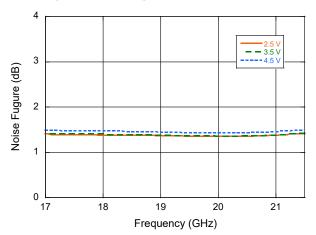



Typical Performance Curves over Current @ V_D = 3.5 V, +25°C, Z_0 = 50 Ω

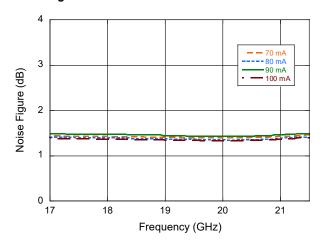
Gain 40 30 10 10 17 18 19 20 21 Frequency (GHz)

Input Return Loss

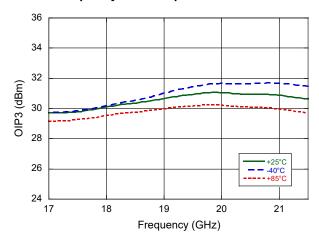

Output Return Loss

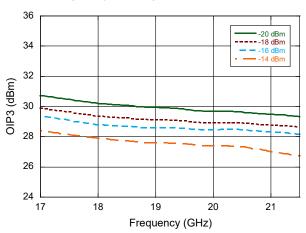


Typical Performance Curves @ V_D = 3.5 V, I_D = 90 mA, 25°C, Z_0 = 50 Ω

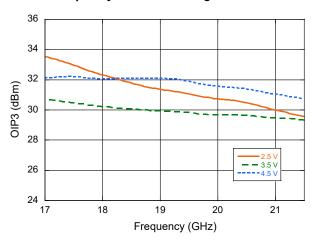

Noise Figure over Temperature

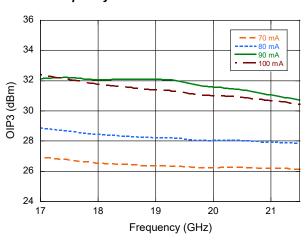
Noise Figure over Voltage


Noise Figure over Current

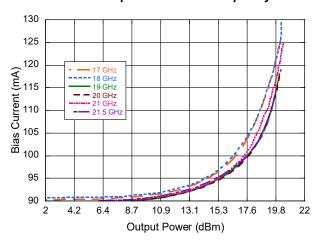


Typical Performance Curves @ V_D = 3.5 V, I_D = 90 mA, P_{IN} = -20 dBm, 25°C, Z_0 = 50 Ω


OIP3 vs Frequency over Temperature


OIP3 vs Frequency over Input Power

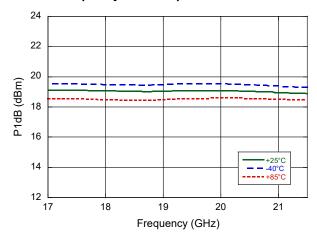

OIP3 vs Frequency over Bias Voltage


OIP3 vs Frequency over Bias Current

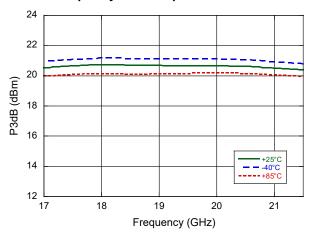
Gain vs Output Power over Frequency

Bias Current vs Output Power over Frequency

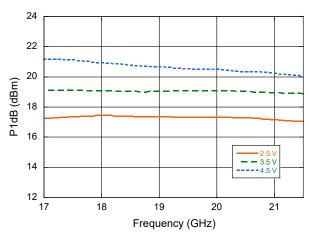
8

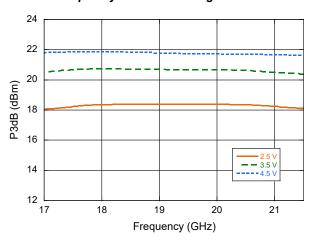

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

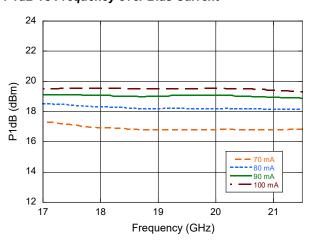
Visit www.macom.com for additional data sheets and product information.

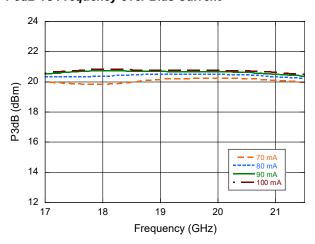


Typical Performance Curves @ V_D = 3.5 V, I_D = 90 mA, P_{IN} = -20 dBm, 25°C, Z_0 = 50 Ω


P1dB vs Frequency over Temperature

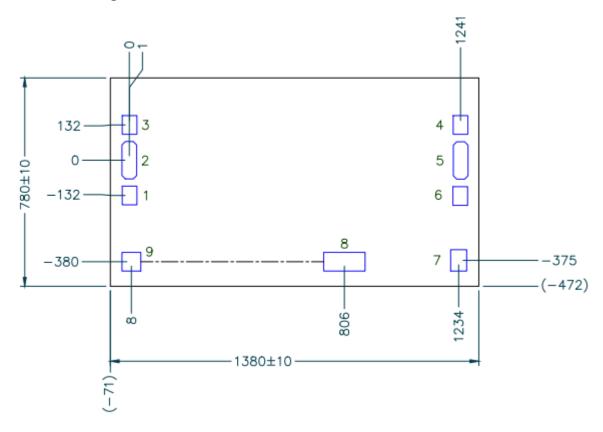

P3dB vs Frequency over Temperature


P1dB vs Frequency over Bias Voltage


P3dB vs Frequency over Bias Voltage

P1dB vs Frequency over Bias Current

P3dB vs Frequency over Bias Current


MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

9

Chip Outline Drawing

BOND PAD DIM. (µm)			
PAD	х	Y	PIN LABEL
1,3,4,6	55	70	GND
2	55	140	RFIN
5	55	140	RFOUT
7	60	80	GND
8	155	70	VDD
9	70.5	70	VBIAS

NOTES:

- UNLESS OTHERWISE SPECIFIED, ALL DIMENSIONS SHOWN ARE μm WITH A TOLERANCE OF ±5 μm.
- DIE THICKNESS IS 100 ±10 μm
- BOND/PAD BACKSIDE METALLIZATION: GOLD
- DIE SİZE REFLECTS FINAL DIMENSIONS.

Ka Band, Low Noise Amplifier 17.0 - 21.5 GHz

MAAL-011286-DIE

Rev. V

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.