Ka Band, Low Noise Amplifier 27.0 - 31.5 GHz

MAAL-011238

Preliminary - Rev. V2P

Features

Low Noise Figure: 1.5 dB

Gain: 30 dBP1dB: +11 dBm

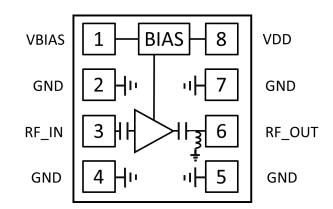
Bias Voltage: V_{DD} = 2 V
 Bias Current: I_{DSQ} = 25 mA
 50 Ω Matched Input and Output
 2 mm DFN 8-Lead Package

RoHS* Compliant

Applications

- Satellite Communications
- Low Earth Orbit Space Payloads
- GEO High Throughput Satellite
- Radar
- EW

Description


The MAAL-011238 is an easy to use low noise amplifier. It operates from 27 GHz to 31.5 GHz and provides 1.5 dB noise figure, 30 dB gain and a P1dB of 11 dBm. The input and output are fully matched to 50Ω with typical return loss >10 dB.

This product is fabricated using a GaAs pHEMT process which features full passivation for enhanced reliability.

The MAAL-011238 can be used as a low noise amplifier stage or as a driver stage in higher power applications. This device is ideally suited for Ka-band satellite communication systems.

The MAAL-011238 is also available in die form under MAAL-011238-DIE part number.

Functional Schematic

Pin Configuration¹

Pin#	Function	Description
1	VBIAS	Bias Voltage
2, 4, 5, 7	GND	Ground
3	RF _{IN}	RF Input
6	RF _{OUT}	RF Output
8	VDD	Drain Supply
Paddle	GND ¹	Ground

 The backside of the die must be connected to RF, DC and thermal ground.

Ordering Information

Part Number	Package
MAAL-011238	Pre-production

PRELIMINARY: Data Sheets contain information regarding a product MACOM has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Preliminary - Rev. V2P

Electrical Specifications: Freq. = 27.0 - 31.5 GHz, T_A = 25°C, V_D = 2 V, Z_0 = 50 Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Small Signal Gain	P _{IN} = -20 dBm 27.0 GHz 31.5 GHz	dB	_	29 28	_
Small Signal Gain Variation over Temperature	_	dB/°C		0.02	
Gain Flatness	_	dB	1	0.5	1
Noise Figure	_	dB		1.5	
Input Return Loss	_	dB	1	10	
Output Return Loss	_	dB	_	10	_
P1dB	27.0 GHz 31.5 GHz	dBm		10.5 11.0	
Output 3rd Order Intercept	P _{IN} = -26 dBm/tone, 10 MHz spacing	dBm	_	20	_
Supply Current	_	mA	_	25	_

Absolute Maximum Ratings^{2,3}

Parameter	Absolute Maximum	
Input Power	18 dBm	
Drain Voltage	4 V	
Junction Temperature ^{4,5}	+160°C	
Operating Temperature	-40°C to +85°C	
Storage Temperature	-65°C to +125°C	

- Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- 4. Operating at nominal conditions with $T_J \le +150^{\circ}C$ will ensure MTTF > 1 x 10^6 hours.
- 5. Junction Temperature (T_J) = T_C + Θjc * (V * I)
 Typical thermal resistance (Θjc) = 93 °C/W.
 a) For T_C = +25°C,
 T_J = 31 °C @ 2 V, 32 mA

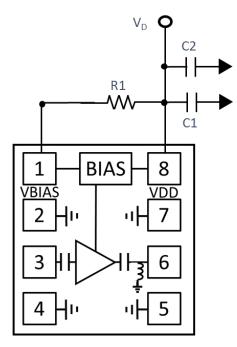
b) For T_C = +85°C, T_J = 91 °C @ 2 V, 32 mA

Maximum Operating Conditions

Parameter	Maximum	
TX Input Power	-14 dBm	
V_{DD}	3.5 V	
Junction Temperature ^{4,5}	+150°C	
Operating Temperature	-40°C to +85°C	

Handling Procedures

Please observe the following precautions to avoid damage:


Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1A (250 V) devices.

Preliminary - Rev. V2P

Application Schematic

Parts List

Part	Value	Case Style
C1	100 pF	0402
C2	0.1 μF	0402
R1	500 Ω	0402

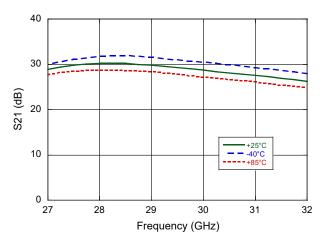
Application Circuit and Operation

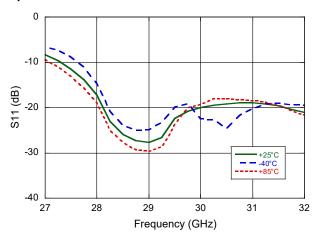
The basic application circuit is shown below. Place C1 capacitor as close to the package as physically possible. The position of the C2 capacitor is not as critical but should also be placed as closely as practically possible.

Operating the MAAL-011238 Turn-on

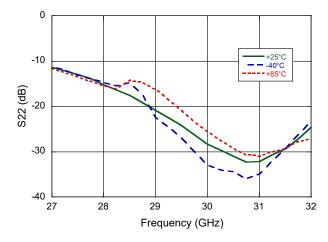
- 1. Apply V_D (+2 V)
- 2. Set I_{DQ} (25 mA) by adjusting R1
- 3. Apply RF_{IN} signal

Turn-off


- 1. Remove RF_{IN} signal.
- 2. Decrease V_D to 0 V

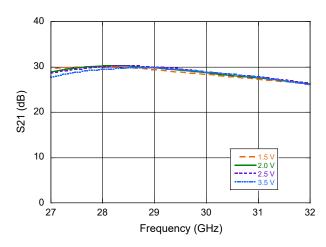

Preliminary - Rev. V2P

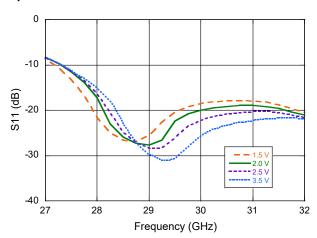
Typical Performance Curves @ V_D = 2 V, I_D = 25 mA, Z_0 = 50 Ω


Gain

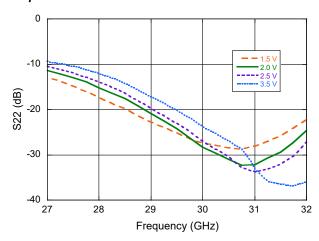
Input Return Loss

Output Return Loss

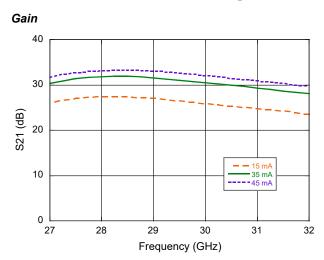


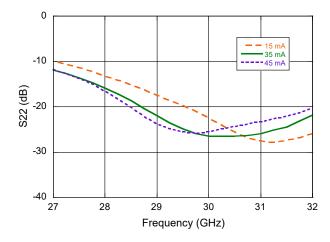

Preliminary - Rev. V2P

Typical Performance Curves @ I_D = 25 mA, Z_0 = 50 Ω


Gain

Input Return Loss

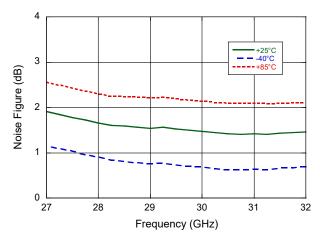

Output Return Loss

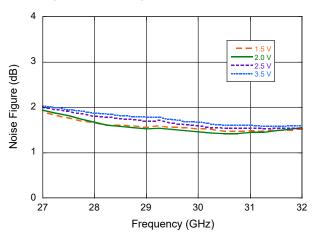

Preliminary - Rev. V2P

Typical Performance Curves @ $V_D = 2 V$, $Z_0 = 50 \Omega$

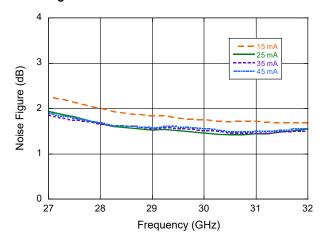
Input Return Loss 0 -10 -10 -20 -30 -30 -35 mA -35

Output Return Loss



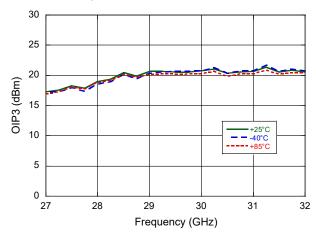

Preliminary - Rev. V2P

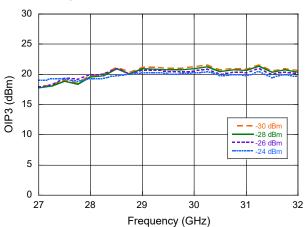
Typical Performance Curves @ V_D = 2 V, I_D = 25 mA, 25°C, Z_0 = 50 Ω


Noise Figure over Temperature

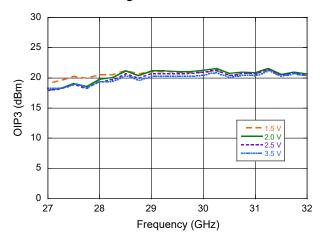
Noise Figure over Voltage

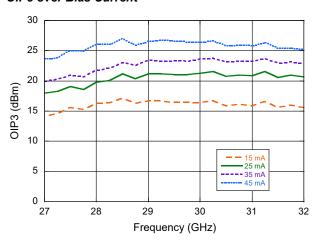
Noise Figure over Current



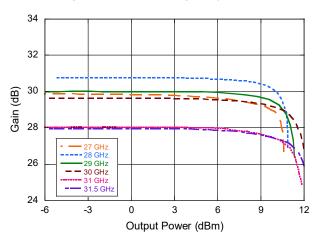

Preliminary - Rev. V2P

Typical Performance Curves @ V_D = 2 V, I_D = 25 mA, P_{IN} = -30 dBm, 25°C, Z_0 = 50 Ω

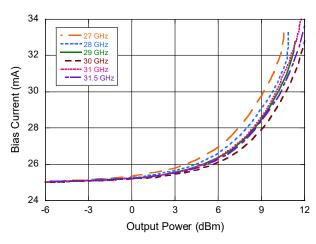

OIP3 over Temperature


OIP3 over Input Power

OIP3 over Bias Voltage



OIP3 over Bias Current

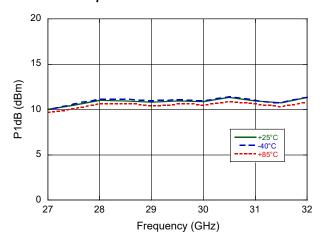


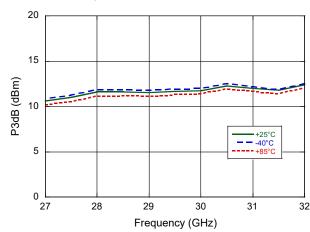
Gain vs Output Power over Frequency

8

Bias Current vs Output Power over Frequency

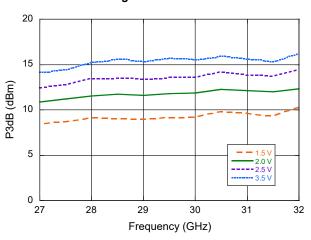
PRELIMINARY: Data Sheets contain information regarding a product MACOM has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.


MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

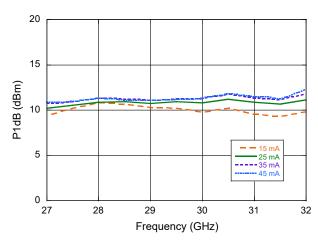

Preliminary - Rev. V2P

Typical Performance Curves @ $V_D = 2 V$, $I_D = 25 mA$, $25^{\circ}C$, $Z_0 = 50 \Omega$

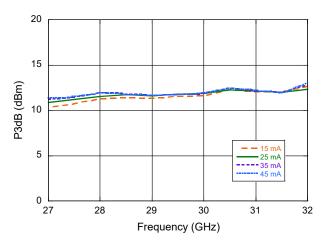
P1dB over Temperature


P3dB over Temperature

P1dB over Bias Voltage



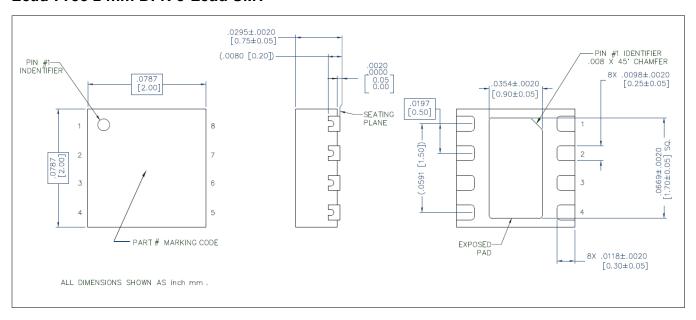
P3dB over Bias Voltage



P1dB over Bias Current

9

P3dB over Bias Current


PRELIMINARY: Data Sheets contain information regarding a product MACOM has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Preliminary - Rev. V2P

Lead-Free 2 mm DFN 8-Lead SMT^{9,10,11,12}

- 9. All units in in (mm), unless otherwise noted, with a tolerance of $.xxxx = \pm .0005$ in and $.xxx = \pm .005$ in.
- 10. Lead finish: NiPdAu plating
- 11. Reference Application Note S2083 for lead-free solder reflow recommendations.
- 12. Meets JEDEC moisture sensitivity level 1 requirements.

Ka Band, Low Noise Amplifier 27.0 - 31.5 GHz

MAAL-011238

Preliminary - Rev. V2P

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

11