

MAAL-011234

Rev. V

Features

Non-Magnetic Package (4 mm)

Noise Figure: 0.35 dB

Gain: 28 dB

Input Resistance: 1.7 Ω
 Output Impedance: 50 Ω
 Single Voltage Bias: 10 V
 Integrated Active Bias Circuit

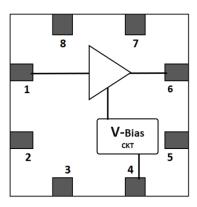
Low Current: 9 mAUnconditionally StableRoHS* Compliant

Applications

MRI Applications

Description

The MAAL-011234 is a high dynamic range, single stage MMIC LNA. With external matching networks it exhibits excellent low noise performance, low input impedance and high gain characteristics suitable for 1.5T and 3T applications.


This low noise amplifier has an integrated active bias circuit allowing direct connection to single 10 V bias, while minimizing variations over temperature and process. The bias current is set by an external resistor, so the user can customize the power consumption to fit the application. Operation down to 5V with reduced linearity is also possible.

Ordering Information^{1, 2}

Part Number	Description
MAAL-011234	Production Samples
MAAL-011234-TR1000	1000 piece reel
MAAL-011234-TR3000	3000 piece reel
MAAL-011236-S15PPR	Sample Board 1.5T
MAAL-011237-SC3PPR	Sample Board 3T, 123.1 ± 1 MHz
MAAL-011237-SG3PPR	Sample Board 3T, 127.74 ± 1 MHz

- 1. Reference Application Note M513 for reel size information.
- 2. PPR sample boards contain magnetic SMT components.

Functional Block Diagram

Pin Configuration^{3,4}

Pin #	Pin Name
1	RF _{IN}
2, 3, 5, 7, 8	N/C
4	V _{BIAS}
6	RF _{OUT} /V _{DD}

- MACOM recommends connecting unused package pins to ground.
- The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MAAL-011234 Rev. V1

Pin Description

Pin#	Name	Description		
1	RF _{IN}	RF Input, direct connection to gate, must be DC blocked.		
2, 3, 5, 7, 8	N/C	N/C No internal connection.		
4	V _{BIAS}	Bias Voltage.		
6	RF _{OUT} / V _{DD}	RF Output / Drain Voltage. External bias tee required for this pin.		

MAAL-011234

DC Electrical Specifications: V_{DD} = +10 V, T_C = 25°C

Parameter	Test Conditions	Units	Min.	Тур.	Max.
DC Current I _{DD} (I _{DS} + I _{BIAS})	P _{IN} = -30 dBm	mA		9	12.5

RF Electrical Specifications⁵:

$V_{DD} = 10 \text{ V}, T_C = +25^{\circ}\text{C}, Z_{LOAD \&} Z_{SOURCE} = 50 \Omega, \text{ tuned for 1.5T (F0 = 63.87 MHz)}$

Parameter	Test Conditions		Min.	Тур.	Max.
Bandwidth	Centered at 63.87 MHz		_	1	_
Noise Figure	-	dB	_	0.36	_
Gain	-	dB	_	28	_
Input Impedance	Real Z _{IN} Imaginary Z _{IN}	Ohms	_	1.7 0	_
Output Return Loss	-	dB	_	20	_
Reverse Isolation	-	dB	_	62	_
Output IP3	P _{OUT} = 0 dBm per tone, 1 MHz & 100 KHz spacing	dBm	_	27	_
Output P1dB	-	dBm	_	17	_

V_{DD} = 10 V, T_{C} = +25°C, $Z_{LOAD~\&}Z_{SOURCE}$ = 50 Ω , tuned for 3T (F0 = 127.74 MHz)

Parameter	Test Conditions		Min.	Тур.	Max.
Bandwidth	Centered at 127.74 MHz	MHz	1	1	_
Noise Figure	-	dB	_	0.3	_
Gain	-	dB	26.5	28	_
Input Impedance	Real Zin Imaginary Zin		1 1	1.7 0	2.2 —
Output Return Loss	-		_	22	_
Reverse Isolation	-	dB	_	60	_
Output IP3	P _{OUT} = 0 dBm per tone, 1 MHz & 100 KHz spacing	dBm	_	24	_
Output P1dB	-	dBm	_	17	_

^{5.} Using external matching components. Refer to Application section.

MAAL-011234

Recommended Operating Conditions

Parameter		Unit	Min.	Тур.	Max.
RF Input Power		dBm	_	-30	-10
DC Supply		V	5	10	11
DC Bias ⁸		V	3.5	4.3	6
Junction Temperature ^{9, 10}		°C	_	_	+150
Operating Temperature ¹¹		°C	0		+70

Absolute Maximum Ratings^{6,7}

Parameter	Symbol	Unit	Min.	Max.
RF Input Power	P _{IN}	dBm	_	26
DC Supply	V_{DD}	V	_	13
DC Bias ⁸	V _{BIAS}	V	_	13
Junction Temperature ^{9, 10}	TJ	°C	_	+160
Operating Temperature ¹¹	T _C	°C	-40	+85
Storage Temperature	_	°C	-55	+150

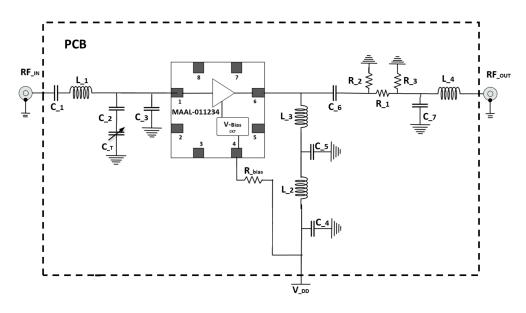
- Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- V_{BIAS} is the voltage after R_{BIAS} at pin 4 on page 5.
 Operating at nominal conditions with T_J ≤ +150°C will ensure MTTF > 1 x 10⁶ hours.
 Junction Temperature (T_J) = T_C + Θ_{JC} * ((V * I))
- Typical thermal resistance $(\Theta_{JC}) = 97^{\circ}C/W$.

 - a) For $T_C = +25^{\circ}C$, $T_J = 34^{\circ}C @ 10 \text{ V}, 9 \text{ mA}$ b) For $T_C = +70^{\circ}C$,

 - $T_J = 79^{\circ}C @ 10^{\circ}V, 9 \text{ mA}$
- 11. Operating temperature is defined at the back of device paddle.

Handling Procedures

Please observe the following precautions to avoid damage:

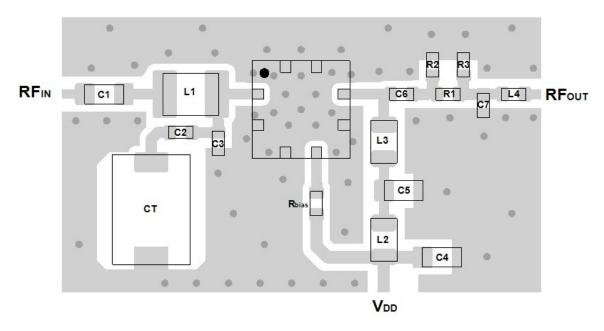

Static Sensitivity

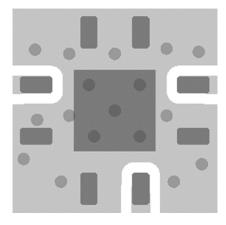
electronic devices are sensitive electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

MAAL-011234 Rev. V1

Recommended Circuit Board Schematic

Component Values for 1.5T and 3T Applications

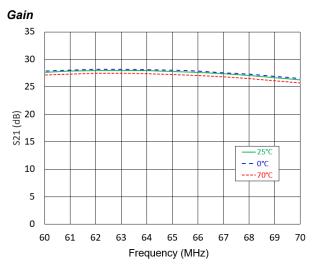

Component	1.5T Value	3T Value	Case Size	Vendor	
C1	1000 pF	1000 pF	0603	Vishay Vitramon, non-magnetic (COG)	
C2	0 Ω	0 Ω	0402	Vishay Vitramon, non-magnetic (COG)	
СТ	4.5 - 20 pF	4.5 - 20 pF	3 mm	PPI 46 Series 3mm Surfacae Mount	
C3	12 pF	DNI	0402	Vishay Vitramon, non-magnetic (COG)	
C4, C5	0.01 μF	0.01 μF	0603	Vishay Vitramon, non-magnetic (XR7)	
C6	39 pF	12 pF	0402	Vishay Vitramon, non-magnetic (COG/XR7)	
C7	68 pF	4.7 pF	0402	Vishay Vitramon, non-magnetic (COG)	
L1	150 nH	100 nH	0805	CoilCraft 0805HP Series (2012)	
L2	390 nH	390 nH	0603	CoilCraft 0603HP Series (1608)	
L3	200 nH	110 nH	0603	CoilCraft 0603HP Series (1608)	
L4	0 Ω	0 Ω	0402	CoilCraft 0402HP Series (1005)	
R _{BIAS}	7.15k Ω	7.15k Ω	0402	Vishay PNM Dale Thin Film, non-magnetic	
R1	10 Ω	38.3 Ω	0402	Vishay PNM Dale Thin Film, non-magnetic	
R2, R3	1000 Ω	825 Ω	0402	Vishay PNM Dale Thin Film, non-magnetic	

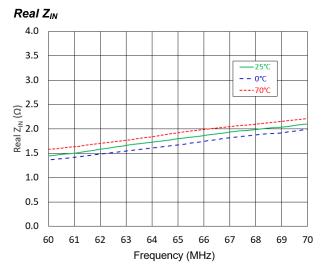

MAAL-011234

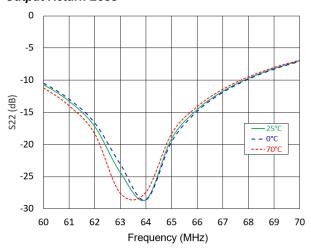
Rev. V1

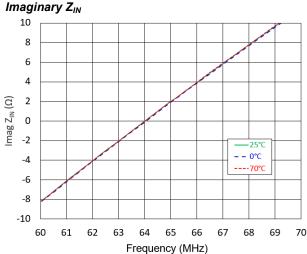
Recommended PCB Layout

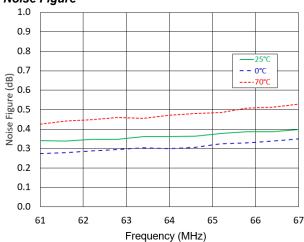
Recommended PCB Land Pattern


Substrate recommended:

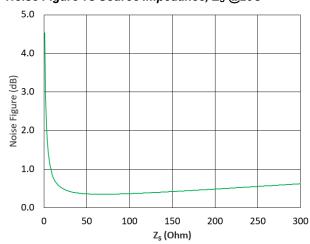

- FR4, 0.020" CORE
- 1.5 oz. Cu


MAAL-011234 Rev. V1


Typical 1.5T Performance Curves (63.87 MHz)



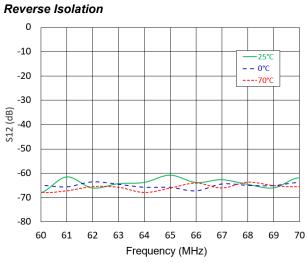
Output Return Loss



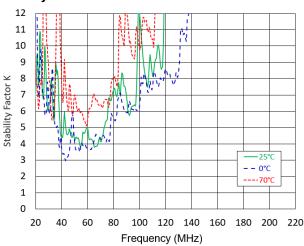
Noise Figure

Noise Figure vs Source Impedance, Z_S @25C

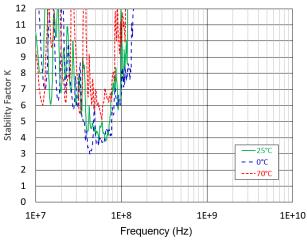
7

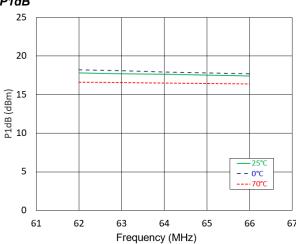

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

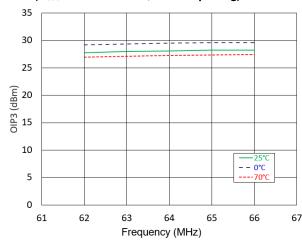
Visit www.macom.com for additional data sheets and product information.



MAAL-011234 Rev. V1


Typical 1.5T Performance Curves (63.87 MHz)

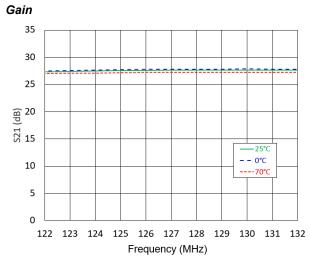

Stability Factor K

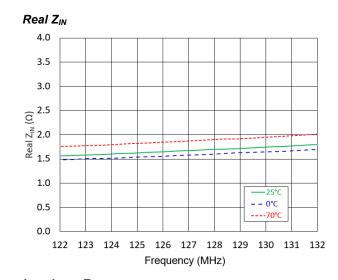

P1dB

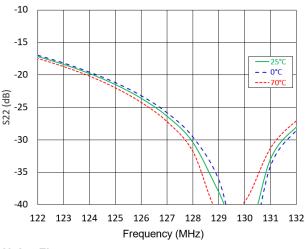
OIP3 (Pout = 0 dBm / Tone, 100 kHz spacing)

OIP3 (Pout = 0 dBm / Tone, 1 MHz spacing)

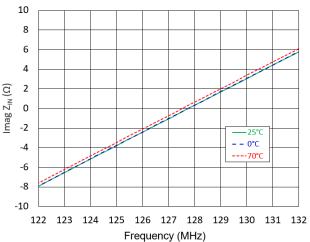
8

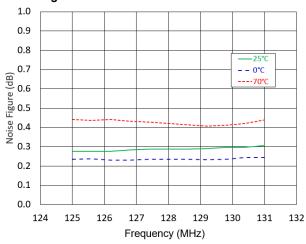

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

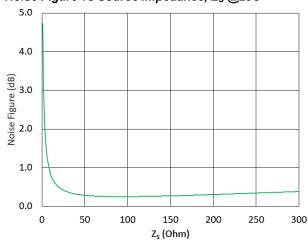

Visit www.macom.com for additional data sheets and product information.


MAAL-011234 Rev. V1

Typical 3T Performance Curves (127.74 MHz)

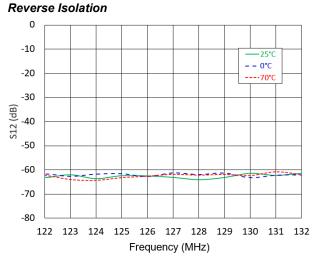



Output Return Loss

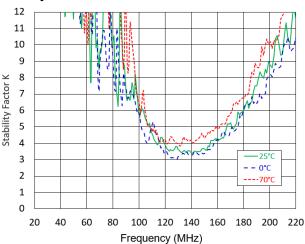


Noise Figure

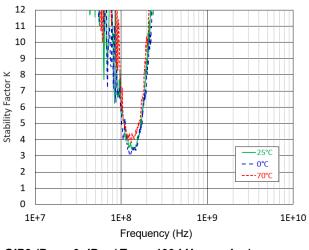
Noise Figure vs Source Impedance, Z_S @25C

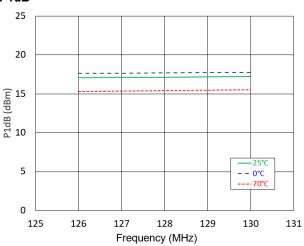

9

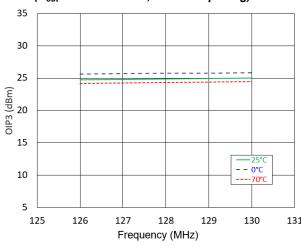
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

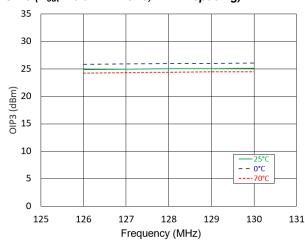


MAAL-011234 Rev. V1


Typical 3T Performance Curves (127.747 MHz)


Stability Factor K

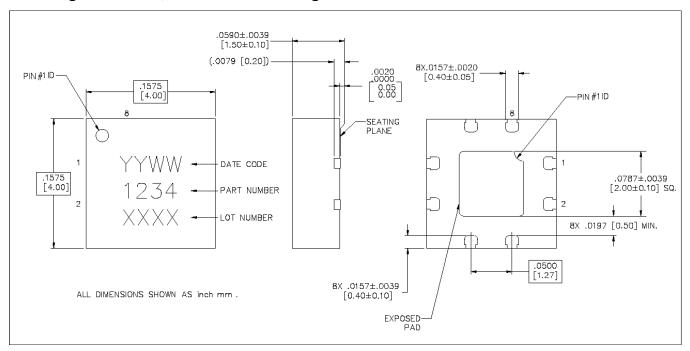



P1dB

OIP3 (Pout = 0 dBm / Tone, 100 kHz spacing)

OIP3 (P_{out} = 0 dBm / Tone, 1 MHz spacing)

10


MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

MAAL-011234 Rev. V1

Non-Magnetic 4 mm, 8-Lead SMT Package

[†] Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements. Plating is 100% matte tin over copper.

Revision history

Rev	Date	Change description
V1	June 2024	Initial Release

MAAL-011234

Rev. V

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.