Low Noise Amplifier 32 - 37 GHz

MAAL-011198

Rev. V2

Features

Gain: 18.5 dBmNoise Figure: 3 dBOutput IP3: 23 dBmDrain Supply: 3.3 V

2 mm, 8 lead PDFN Package

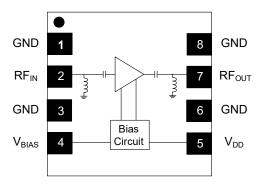
RoHS* Compliant

Applications

- Ka-Band Low Noise
- Ka-Band Driver Amplifier

Description

The MAAL-011198 is a Ka-band low noise amplifier with an operating frequency range of 32 to 37 GHz. This LNA has a 3 dB noise figure, 19 dB gain, and a 23 dBm output IP3. The output P1dB is 18 dBm. A 3.3 V supply voltage is required with a typical current draw of 90 mA.


The MAAL-011198 is designed for Ka-band low noise and driver applications. The 2 mm, 8 lead PDFN package is lead free and RoHS compliant.

Ordering Information^{1,2}

Part Number	Package
MAAL-011198-TR1000	1000 piece reel
MAAL-011198-TR3000	3000 piece reel
MAAL-011198-SMB	Sample Board

- 1. Reference Application Note M513 for reel size information.
- 2. All sample boards include 5 loose parts.

Block Diagram

Pin Configuration³

Pin#	Pin Name Description	
1,3,6,8	GND	Ground
2	RF _{IN}	RF Input
4	V _{BIAS} Bias Voltage	
5	V_{DD}	Voltage Supply
7	RF _{OUT}	RF Output

3. The exposed pad centered on the package bottom must be connected to RF, DC, and thermal ground.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Rev. V

Electrical Specifications: Freq. = 32 - 37 GHz, V_{DD} = +3.3 V, V_{BIAS} = open, T_A = 25°C, Z_0 = 50 Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Gain	P _{IN} = -20 dBm	dB	15.0	18.5	_
Gain Flatness	P _{IN} = -20 dBm	dB	_	+/-0.5	_
Noise Figure	_	dB	_	3	4.5
Input Return Loss	P _{IN} = -20 dBm	dB	_	10	_
Output Return Loss	P _{IN} = -20 dBm	dB	_	12	_
Output IP3	P _{IN} = -22 dBm/tone, 10 MHz spacing	dBm	_	23	_
P1dB	_	dBm	_	18	_
DC Current	I _{DQ}	dBm	_	90	_

Maximum Operating Conditions

Parameter	Maximum
TX Input Power	5 dBm
V_{DD}	4 V
Junction Temperature ^{4,5}	+160°C
Operating Temperature ⁶	-40°C to +85°C

- 4. Operating at nominal conditions with $T_J \le +160^{\circ}C$ will ensure MTTF > 1 x 10^6 hours.
- 5. TX Junction Temp. $(T_J) = T_C + \Theta jc * ((V * I) (P_{OUT} P_{IN}))$. Typical TX thermal resistance $(\Theta jc) = 131 °C/W$. a) For $T_C = +85 °C$,

T_J = 124°C @ 3.3 V, 90 mA

6. MTTF must be greater than 1 x 10⁶ hours.

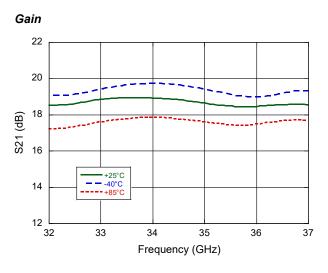
Absolute Maximum Ratings^{7,8}

Parameter	Absolute Maximum
TX Input Power ⁹	23 dBm
V_{DD}	6 V
Junction Temperature ¹⁰	+170°C
Storage Temperature	-55°C to +150°C

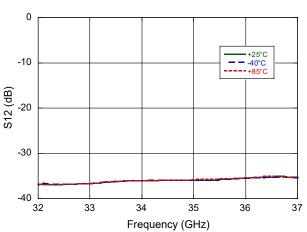
- 7. Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- 9. Based on surviving a CW input for 1 minute.
- Junction temperature directly effects device MTTF. Junction temperature should be kept as low as possible to maximize lifetime.

Handling Procedures

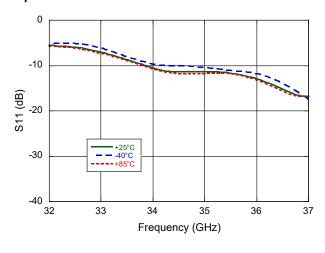
Please observe the following precautions to avoid damage:

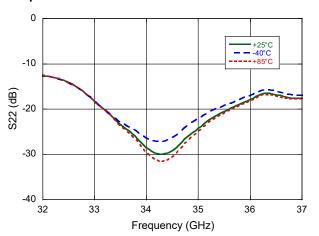

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these class 1C (HBM) & C3 (CDM) devices.



Rev. V2

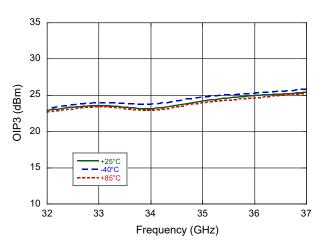

Typical Performance Curves @ 3.3 V

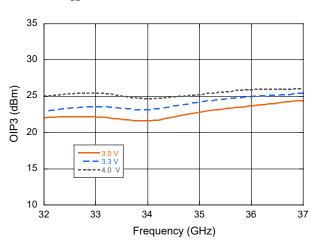

Isolation

Input Return Loss

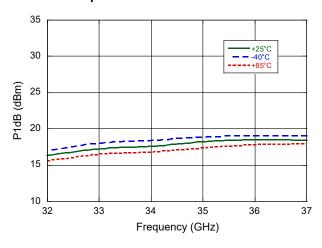
Output Return Loss

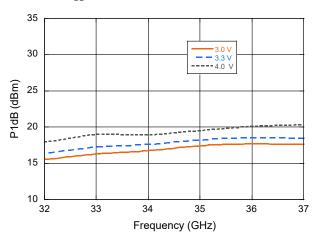
Noise Figure



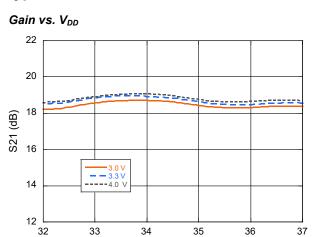

Rev. V2

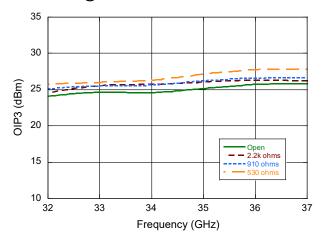
Typical Performance Curves


OIP3 vs. Temperature

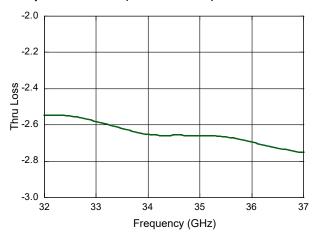

OIP3 vs. V_{DD}

P1dB vs. Temperature


P1dB vs. VDD

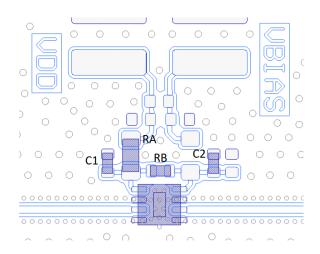

MAAL-011198 Rev. V2

Typical Performance Curves



Frequency (GHz)

OIP3 vs. RB @ 3.3V


Sample Board Loss (RFIN + RFOUT)

MAAL-011198 Rev. V2

Sample PCB Layout

Parts List

Des	Value	Size	Part Number	Purpose
C1, C2	100 pF	0402	Murata GRM022R71C101ME14	Bypass
Ra ¹¹	See chart	0603	various	Bias Resistor
R _B ¹²	See chart	0402	various	Bias Resistor
U1	_	2 mm	MACOM MAAL-011198	LNA

^{11.} R_A: Used as voltage dropping resistor when VDD is higher than 4 V

^{12.} R_B: (optional) used to adjust current draw and OIP3 for use only at VDD= 3.3 V.

V _{DD} = 3.3 V			
R _B (Ω)	R _A (Ω)	I _{DD} (mA)	
Open	0	90	
500	0	110	
1000	0	102	
2k	0	95	

V _{DD} = 4 V			
$R_{B}(\Omega)$ $R_{A}(\Omega)$ $I_{DD}(mA)$			
Open	0	100	

V _{DD} = 5 V			
$R_{B}(\Omega)$ $R_{A}(\Omega)$ $I_{DD}(mA)$			
Open	10	100	

Low Noise Amplifier 32 - 37 GHz

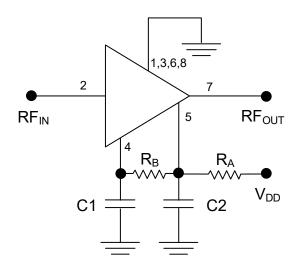
MAAL-011198

Rev. V2

Application Information

The MAAL-011198 is designed to be easy to use yet provide high performance. The ultra small size, with no matching, and simple bias application allows easy placement on system boards.

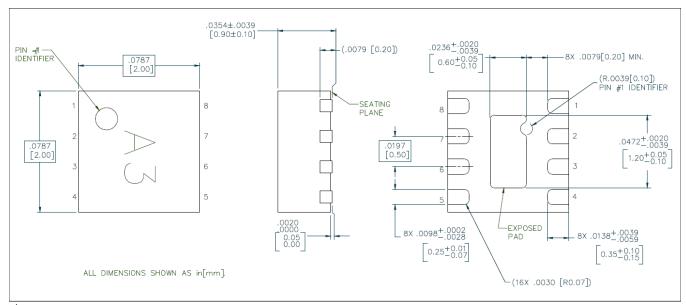
Single Bias Operation


Connecting V_{DD} to V_{BIAS} using an external resistor R_B enables single bias operation of the amplifier, and the value of external resistor R_B sets the desired current I_{DD} . The following table shows drain current (I_{DD}) versus external resistor (R_B) values:

With pin 4 (V_{BIAS}) left open the amplifier will default to low power mode. When pin 4 (V_{BIAS}) is set to 0 V through R_B , the device enters power down mode. In order to use power down mode a second supply is required that directly drives the R_B resistor.

Grounding

It is recommended that the total ground (common mode) inductance not exceed 0.03 nH (30 pH). This is equivalent to placing at least four 8-mil (200-µm) diameter vias under the device, assuming an 8-mil (200-µm) thick RF layer to ground.


Application Schematic

Rev. V2

Lead-Free 2 mm 8-Lead PDFN[†]

Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements. Plating is 100% matte tin over copper.

Low Noise Amplifier 32 - 37 GHz

MAAL-011198

Rev. V2

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.