Features

- 1 dB Noise Figure
- 21 dB Gain
- 5 V Single Bias Voltage
- 28 dBm OIP3
- Matched to 50 Ω (No External RF Matching)
- Lead-Free 2 mm 8-LD PDFN Package
- Halogen-Free “Green” Mold Compound
- RoHS* Compliant

Description

The MAAL-011138 is a high dynamic range, single stage MMIC LNA designed to operate from 2.5 GHz to 3.5 GHz assembled in a lead-free 2 mm 8-LD PDFN plastic package. This amplifier has low noise figure, high gain and excellent linearity. In the 50 Ω environment and at +5 V, this device offers low, 1.0 dB noise figure with over 21 dB of typical gain and 28 dBm OIP3.

This LNA is matched to 50 Ω at both the input and output ports. No external RF matching is required. Only a single DC decoupling capacitor is required on the VDD port.

This MAAL-011138 is ideally suited for S-Band Transmit-Receive Modules requiring low noise figure, high gain and excellent output IP3.

Ordering Information¹,²

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAL-011138-TR1000</td>
<td>1000 piece reel</td>
</tr>
<tr>
<td>MAAL-011138-TR3000</td>
<td>3000 piece reel</td>
</tr>
<tr>
<td>MAAL-011138-SMB</td>
<td>Sample Board</td>
</tr>
</tbody>
</table>

¹ Reference Application Note M513 for reel size information.
² All sample boards include 5 loose parts.

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support
Low Noise Amplifier
2.5 - 3.5 GHz

Electrical Specifications: $V_{DD} = 5 \text{ V}$, $+25^\circ \text{C}$, $Z_0 = 50 \Omega$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise Figure</td>
<td>3 GHz</td>
<td>dB</td>
<td>—</td>
<td>1.0</td>
<td>1.4</td>
</tr>
<tr>
<td>Gain</td>
<td>3 GHz</td>
<td>dB</td>
<td>19.5</td>
<td>21</td>
<td>—</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>2.5 to 3.5 GHz</td>
<td>dB</td>
<td>—</td>
<td>12</td>
<td>—</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>2.5 to 3.5 GHz</td>
<td>dB</td>
<td>—</td>
<td>10</td>
<td>—</td>
</tr>
<tr>
<td>Output IP3</td>
<td>$P_{IN} = -22 \text{ dBm per tone, 10 MHz spacing 3 GHz}$</td>
<td>dBm</td>
<td>—</td>
<td>28</td>
<td>—</td>
</tr>
<tr>
<td>Current</td>
<td>I_{DD}</td>
<td>mA</td>
<td>—</td>
<td>55</td>
<td>65</td>
</tr>
</tbody>
</table>

Maximum Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Input Power CW</td>
<td>$P_{IN} \leq 3 \text{ dB compression level}$</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>$-40^\circ \text{C to } +85^\circ \text{C}$</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>$+150^\circ \text{C}$</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Input Power CW</td>
<td>$P_{IN} \leq 6 \text{ dB compression level}$</td>
</tr>
<tr>
<td>V_{DD}</td>
<td>6 V</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>$-55^\circ \text{C to } +125^\circ \text{C}$</td>
</tr>
</tbody>
</table>

4. Exceeding any one or combination of these limits may cause permanent damage to this device.
5. MACOM does not recommend sustained operation near these survivability limits.
6. Operating at nominal conditions with $T_J \leq 150^\circ \text{C}$ will ensure MTTF 1×10^6 hours.
7. Junction Temperature (T_J) = $T_C + \Theta_{JC} \times (V \times I - (P_{OUT} - P_{IN}))$
 Typical thermal resistance (Θ_{JC}) = 83°C/W
 a) For $T_C = +25^\circ \text{C}$, $T_J = 45^\circ \text{C} @ 5 \text{ V, 0.055 A, } P_{OUT} = 15 \text{ dBm, } P_{IN} = -6 \text{ dBm}$
 b) For $T_C = +85^\circ \text{C}$, $T_J = 105^\circ \text{C} @ 5 \text{ V, 0.055 A, } P_{OUT} = 15 \text{ dBm, } P_{IN} = -5 \text{ dBm}$

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1A (HBM) devices.
Low Noise Amplifier
2.5 - 3.5 GHz

Typical Performance Curves: 5 V, 55 mA

Gain

Noise Figure

Input Return Loss

Output Return Loss

Output IP3
Applications
The MAAL-011138 is designed to work as a low noise gain block over the 2.5 - 3.5 GHz frequency range in a 50 Ω environment.

A 100 pF capacitor from pin 1 to ground is the only external SMT component required.

The PCB must have good grounding. Via holes directly under the MAAL-011138 are required for RF & DC ground.

Vias beneath DUT = (8) 8 mil plated through holes
Dielectric = RO4350, 10 mil thick
Top Metal = 1 oz. CU
LW = 21 mil

Lead-Free 2 mm 8-Lead PDFN†

† Reference Application Note S2083 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 1 requirements.
Plating is 100% matte tin over copper.