MAAL-011130

Broadband Low Noise Amplifier
2 - 18 GHz

Features
- Gain: 21 dB @ 10 GHz
- Noise Figure: 1.4 dB @ 10 GHz
- Output P1dB: 14 dBm
- Single Voltage Bias: 3.3 V to 5 V
- Power Down Capability
- Lead-Free 2 mm 8-lead PDFN Package
- Halogen-Free “Green” Mold Compound
- RoHS* Compliant

Description
The MAAL-011130 is an easy-to-use, broadband, low noise amplifier with 19 dB typical gain from 2 to 18 GHz. The input and output are fully matched to 50 Ω with typical return loss >10 dB. Third order linearity (OIP3) is typically 23 dBm and reverse isolation is >35 dB.

Single voltage (V_{DD} from +3.3 V to +5 V) operation is achieved using an external resistor, R_B, between pin 4 and V_{DD}. The value of R_B will set the drain current. Alternatively, the application of a bias voltage (V_B) to pin 4 allows for the adjustment of drain current from 5 mA to 80 mA and provides power down capability, achieved by applying V_B <0.2 V. See biasing information on pages 3 and 4.

The MAAL-011130 is housed in a lead-free 2 mm 8-lead PDFN package compatible with standard pick and place assembly equipment.

The MAAL-011130 is well suited to multiple applications such as X-Band satellite communication receivers and wideband A&D systems.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAL-011130</td>
<td>Bulk</td>
</tr>
<tr>
<td>MAAL-011130-TR3000</td>
<td>3000 piece reel</td>
</tr>
<tr>
<td>MAAL-011130-SMB</td>
<td>Sample Board</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.
2. All sample boards include 3 loose parts.

Broadband Low Noise Amplifier

2 - 18 GHz

Rev. V1

Electrical Specifications: $T_A = +25^\circ C$, $V_{DD} = 5 \, V$, $V_B = 0.9 \, V^5$, $Z_0 = 50 \, \Omega$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>2 GHz</td>
<td>dB</td>
<td>19</td>
<td>27</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>6 GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14 GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18 GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output P1dB</td>
<td>2 GHz</td>
<td>dBm</td>
<td>—</td>
<td>12</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>6 GHz</td>
<td></td>
<td></td>
<td>13</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>10 GHz</td>
<td></td>
<td></td>
<td>14</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>14 GHz</td>
<td></td>
<td></td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>18 GHz</td>
<td></td>
<td></td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>2 GHz</td>
<td>dB</td>
<td>—</td>
<td>2.1</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>6 GHz</td>
<td></td>
<td></td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 GHz</td>
<td></td>
<td></td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14 GHz</td>
<td></td>
<td></td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18 GHz</td>
<td></td>
<td></td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>Output IP3</td>
<td>$P_{IN} = -22 , dBm$/tone (10 MHz Tone Spacing)</td>
<td>dBm</td>
<td>—</td>
<td>18</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2 GHz</td>
<td></td>
<td></td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>6 GHz</td>
<td></td>
<td></td>
<td>24</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>10 GHz</td>
<td></td>
<td></td>
<td>25</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>14 GHz</td>
<td></td>
<td></td>
<td>24</td>
<td>—</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>$P_{IN} = -20 , dBm$</td>
<td>dB</td>
<td>—</td>
<td>10</td>
<td>—</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>$P_{IN} = -20 , dBm$</td>
<td>dB</td>
<td>—</td>
<td>10</td>
<td>—</td>
</tr>
<tr>
<td>Isolation</td>
<td>$P_{IN} = -20 , dBm$</td>
<td>dB</td>
<td>—</td>
<td>35</td>
<td>—</td>
</tr>
<tr>
<td>Bias Current</td>
<td>—</td>
<td>mA</td>
<td>—</td>
<td>76</td>
<td>90</td>
</tr>
</tbody>
</table>

5. For single voltage operation, refer to typical R_e values and biasing information on pages 3 and 4.
Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>10 dBm</td>
</tr>
<tr>
<td>Operating Voltage</td>
<td>7 V</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40 °C to +85 °C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65 °C to +150 °C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>+150 °C</td>
</tr>
</tbody>
</table>

6. Exceeding any one or combination of these limits may cause permanent damage to this device.
7. MACOM does not recommend sustained operation near these survivability limits.
8. Operating at nominal conditions with T_J ≤ +150°C will ensure MTTF > 1 x 10^6 hours.
 Typical thermal resistance (θjc) = 126°C/W.
 a) T_C = +25°C,
 T_J = 76°C @ 5 V, 80 mA
 b) T_C = +85°C,
 T_J = 136°C @ 5 V, 80 mA

Application Information

The MAAL-011130 is designed for simple implementation with high performance. The ultra small size, fully matched, and simple bias application allows easy placement on system boards. It has a shunt inductor connected to ground on the input for ESD protection. For this reason, an input DC blocking capacitor is required if DC voltage is present on the input.

Bias Adjust Using V_B

Pin 4 can be connected to a separate voltage source to achieve the desired I_DD. The amplifier will be powered down by applying a V_B of 0.2 V or less.

The following tables show typical total drain current (I_D_TOTAL = I_D_BIAS + I_DD, where I_D_BIAS is the current drawn by the V_B pin and I_DD is the drain current) versus bias voltage (V_B) values for V_DD voltages of 5.0 V and 3.3 V. Also shown in each case is a typical value of R_B required to set I_DD if using a single supply (see Single Bias Operation information on page 4).

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1A devices.
Sample PCB

Application Schematic

Single Bias Operation
Connecting V_{DD} to pin 4 using an external resistor \(R_b \) enables single bias operation of the amplifier, where the value of external resistor \(R_b \) can be used to set the desired \(I_{DD} \).

In this configuration, power down mode cannot be used unless a switch is included to connect \(V_B \) to ground.

Grounding
It is recommended that the total ground (common mode) inductance not exceed 0.03 nH (30 pH). This is equivalent to placing at least four 8-mil (200-μm) diameter vias under the device, assuming an 8-mil (200-μm) thick RF layer to ground.

Parts List

<table>
<thead>
<tr>
<th>Des</th>
<th>Value</th>
<th>Size</th>
<th>Part Number</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0.01 µF</td>
<td>0201</td>
<td>Murata GRM033R70J103KA01D</td>
<td>Bypass</td>
</tr>
<tr>
<td>U1</td>
<td>—</td>
<td>2 mm</td>
<td>MACOM MAAL-011130</td>
<td>LNA</td>
</tr>
</tbody>
</table>
Typical Performance Curves $V_{DD} = 5\, V$, $V_B = 0.9\, V$

Gain

Isolation

Input Return Loss

Output Return Loss

Noise Figure
Typical Performance Curves $T_A = 25^\circ C$, $V_{DD} = 3.3\, V$ & $5\, V$

Gain

- S_{21} (dB) vs. Frequency (GHz)

Isolation

- S_{12} (dB) vs. Frequency (GHz)

Input Return Loss

- S_{11} (dB) vs. Frequency (GHz)

Output Return Loss

- S_{22} (dB) vs. Frequency (GHz)

Noise Figure

- Noise Figure (dB) vs. Frequency (GHz)
Typical Performance Curves $T_A = 25^\circ C$, $V_{DD} = 5 \text{ V} \& 3.3 \text{ V}$

Gain vs. V_B for $V_{DD} = 5 \text{ V}$

![Gain vs. V_B for $V_{DD} = 5 \text{ V}$](image1)

Gain vs. V_B for $V_{DD} = 3.3 \text{ V}$

![Gain vs. V_B for $V_{DD} = 3.3 \text{ V}$](image2)
Typical Output IP3 Curves $V_{DD} = 5\, \text{V}$ and 3.3 V

Output IP3 @ $T_A = 25^\circ\text{C}$, $V_{DD} = 5\, \text{V}$

![Graph showing Output IP3 vs. Frequency for $V_{DD} = 5\, \text{V}$ at $T_A = 25^\circ\text{C}$ with different V_b levels.]

Output IP3 @ $T_A = -40^\circ\text{C}$, $V_{DD} = 5\, \text{V}$

![Graph showing Output IP3 vs. Frequency for $V_{DD} = 5\, \text{V}$ at $T_A = -40^\circ\text{C}$ with different V_b levels.]

Output IP3 @ $T_A = 85^\circ\text{C}$, $V_{DD} = 5\, \text{V}$

![Graph showing Output IP3 vs. Frequency for $V_{DD} = 5\, \text{V}$ at $T_A = 85^\circ\text{C}$ with different V_b levels.]

Output IP3 @ $T_A = 25^\circ\text{C}$, $V_{DD} = 3.3\, \text{V}$

![Graph showing Output IP3 vs. Frequency for $V_{DD} = 3.3\, \text{V}$ at $T_A = 25^\circ\text{C}$ with different V_b levels.]

Output IP3 @ $T_A = -40^\circ\text{C}$, $V_{DD} = 3.3\, \text{V}$

![Graph showing Output IP3 vs. Frequency for $V_{DD} = 3.3\, \text{V}$ at $T_A = -40^\circ\text{C}$ with different V_b levels.]

Output IP3 @ $T_A = 85^\circ\text{C}$, $V_{DD} = 3.3\, \text{V}$

![Graph showing Output IP3 vs. Frequency for $V_{DD} = 3.3\, \text{V}$ at $T_A = 85^\circ\text{C}$ with different V_b levels.]

For further information and support please visit: https://www.macom.com/support
Typical P1dB and P3dB Curves $V_{DD} = 5\, V$

- **P1dB @ $V_{DD} = 5\, V$, $V_B = 0.9\, V$**
 - Frequency (GHz) vs. P1dB (dBm) for different temperatures ($+25^\circ C$, $-40^\circ C$, $+85^\circ C$).

- **P3dB @ $V_{DD} = 5\, V$, $V_B = 0.9\, V$**
 - Frequency (GHz) vs. P3dB (dBm) for different temperatures ($+25^\circ C$, $-40^\circ C$, $+85^\circ C$).

- **P1dB @ $T_A = 25^\circ C$, $V_{DD} = 5\, V$**
 - Frequency (GHz) vs. P1dB (dBm) for different V_B values ($1.0\, V$, $0.9\, V$, $0.8\, V$, $0.7\, V$, $0.6\, V$).

- **P3dB @ $T_A = 25^\circ C$, $V_{DD} = 5\, V$**
 - Frequency (GHz) vs. P3dB (dBm) for different V_B values ($1.0\, V$, $0.9\, V$, $0.8\, V$, $0.7\, V$, $0.6\, V$).
Typical P1dB and P3dB Curves $V_{DD} = 3.3$ V

- **P1dB @ $V_{DD} = 3.3$ V, $V_B = 0.8$ V**

- **P3dB @ $V_{DD} = 3.3$ V, $V_B = 0.8$ V**

- **P1dB @ $T_A = 25^\circ$C, $V_{DD} = 3.3$ V**

- **P3dB @ $T_A = 25^\circ$C, $V_{DD} = 3.3$ V**
Lead-Free 2 mm 8-Lead PDFN†

† Reference Application Note S2083 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 1 requirements.
Plating is 100% matte tin over copper.