MAAL-011129

Low Noise Amplifier
18 - 31.5 GHz

Features
- Noise Figure: 2.5 dB @ 24 GHz
- High Gain: 23 dB @ 24 GHz
- 50 Ω match on input and output
- Single Voltage Bias: 3 V to 5 V range
- Integrated Active Bias Circuit
- Current adjustable from 1 mA - 80 mA
- Lead-Free 2 mm 8-lead PDFN Package
- Halogen-Free “Green” Mold Compound
- RoHS* Compliant

Description
The MAAL-011129 is an easy-to-use three stage low noise amplifier with high gain and broadband 50 Ω match. It is designed for operation from 18 to 31.5 GHz and housed in a lead-free 2 mm 8-lead PDFN plastic package.

The MAAL-011129 has an integrated active bias circuit and bias tee to allow direct connection to VDD without external chokes or DC blocks. The bias current is set by a simple external resistor, RB, so the user can customize the power consumption. When VBIAS = 0 V, the device is placed in power down mode.

The MAAL-011129 offers a surface-mount, easy-to-use, low noise amplifier solution that is well suited to diverse receiver applications such as VSAT, Point-to-Point and 24 GHz ISM.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAL-011129-TR3000</td>
<td>3000 piece reel</td>
</tr>
<tr>
<td>MAAL-011129-SMB</td>
<td>Sample Board</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.
2. All sample boards include 5 loose parts.

Low Noise Amplifier
18 - 31.5 GHz

Electrical Specifications: Freq. = 24 GHz, \(T_A = 25^\circ C \), \(V_{DD} = 5 \text{ V} \), \(R_B = 1 \text{ k\Omega} \), \(Z_0 = 50 \text{ \Omega} \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise Figure</td>
<td>—</td>
<td>dB</td>
<td>2.5</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>Gain</td>
<td>(P_{IN} = -20 \text{ dBm})</td>
<td>dB</td>
<td>20</td>
<td>23</td>
<td>—</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>(P_{IN} = -20 \text{ dBm})</td>
<td>dB</td>
<td></td>
<td>-13</td>
<td>—</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>(P_{IN} = -20 \text{ dBm})</td>
<td>dB</td>
<td></td>
<td>-13</td>
<td>—</td>
</tr>
<tr>
<td>Output IP3</td>
<td>(P_{IN} = -22 \text{ dBm/tone}) (10 MHz Tone Spacing)</td>
<td>dBm</td>
<td>—</td>
<td>25</td>
<td>—</td>
</tr>
<tr>
<td>Output P1dB</td>
<td>—</td>
<td>dBm</td>
<td>—</td>
<td>16</td>
<td>—</td>
</tr>
<tr>
<td>Isolation</td>
<td>(P_{IN} = -20 \text{ dBm})</td>
<td>dB</td>
<td>—</td>
<td>45</td>
<td>—</td>
</tr>
<tr>
<td>Bias Current</td>
<td>—</td>
<td>mA</td>
<td>—</td>
<td>50</td>
<td>65</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings\(^4,5\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>10 \text{ dBm}</td>
</tr>
<tr>
<td>Operating Voltage</td>
<td>6 \text{ V}</td>
</tr>
<tr>
<td>Junction Temperature(^6,7)</td>
<td>+150\text{°C}</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40\text{°C} to +85\text{°C}</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65\text{°C} to +150\text{°C}</td>
</tr>
</tbody>
</table>

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

4. Exceeding any one or combination of these limits may cause permanent damage to this device.
5. MACOM does not recommend sustained operation near these survivability limits.
6. Operating at nominal conditions with \(T_J \leq +150\text{°C} \) will ensure \(\text{MTTF} > 1 \times 10^6 \) hours.
7. Junction Temperature (\(T_J \)) = \(T_C + \Theta_{jc} \ast (V \ast I) \)
 Typical thermal resistance (\(\Theta_{jc} \)) = 102\text{°C/W}.
 a) \(T_C = +25\text{°C} \),
 \(T_J = 51\text{°C} @ 5 \text{ V}, 50 \text{ mA} \)
 b) \(T_C = +85\text{°C} \),
 \(T_J = 111\text{°C} @ 5 \text{ V}, 50 \text{ mA} \)
Low Noise Amplifier
18 - 31.5 GHz

Sample PCB

Parts List

<table>
<thead>
<tr>
<th>Des</th>
<th>Value</th>
<th>Size</th>
<th>Part Number</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0.01 µF</td>
<td>0201</td>
<td>Murata GRM033R70J103KA01D</td>
<td>Bypass</td>
</tr>
<tr>
<td>C2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RB</td>
<td>See chart</td>
<td>0201</td>
<td>various</td>
<td>Bias Resistor</td>
</tr>
<tr>
<td>U1</td>
<td>2 mm</td>
<td></td>
<td>MACOM MAAL-011129</td>
<td>LNA</td>
</tr>
</tbody>
</table>

Application Schematic

Sample PCB Layout

Application Information

The MAAL-011129 is designed to be easy to use yet provide high performance. The ultra small size, with no matching, and simple bias application allows easy placement on system boards.

Single Bias Operation

Connecting \(V_{\text{DD}} \) to \(V_{\text{BIAS}} \) using an external resistor \(R_B \) enables single bias operation of the amplifier, and the value of external resistor \(R_B \) sets the desired current \(I_{\text{DD}} \). The following table shows drain current \(I_{\text{DD}} \) versus external resistor \(R_B \) values for \(V_{\text{DD}} \) voltages of 5 V and 3.3 V:

<table>
<thead>
<tr>
<th>(V_{\text{DD}}) = 3.3 V</th>
<th>(V_{\text{DD}}) = 5 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_B) (Ω)</td>
<td>(I_{\text{DD}}) (mA)</td>
</tr>
<tr>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>1k</td>
<td>1k</td>
</tr>
<tr>
<td>2k</td>
<td>2k</td>
</tr>
</tbody>
</table>

With pin 4 (\(V_{\text{BIAS}} \)) left open the amplifier will default to low power mode. When pin 4 (\(V_{\text{BIAS}} \)) is set to 0 V through RB, the device enters power down mode. In order to use power down mode a second supply is required that directly drives the RB resistor.

Grounding

It is recommended that the total ground (common mode) inductance not exceed 0.03 nH (30 pH). This is equivalent to placing at least four 8-mil (200-µm) diameter vias under the device, assuming an 8-mil (200-µm) thick RF layer to ground.
Typical Performance Curves $V_{DD} = 5 \text{ V}, R_B = 1 \text{ k}\Omega$

Gain

![Gain Graph](image1)

Noise Figure

![Noise Figure Graph](image2)

Input Return Loss

![Input Return Loss Graph](image3)

Output Return Loss

![Output Return Loss Graph](image4)

P_{1dB}

![P_{1dB} Graph](image5)

$OIP3$

![$OIP3$ Graph](image6)
Typical Performance Curves $V_{DD} = 3.3 \text{ V} \& 5 \text{ V}$

Gain

- S_{21} (dB) vs. Frequency (GHz)
 - 5 V, $R_{B} = 1 \text{ k}$
 - 3.3 V, $R_{B} = 200$

Noise Figure

- Noise Figure (dB) vs. Frequency (GHz)
 - 5 V, $R_{B} = 1 \text{ k}$
 - 3.3 V, $R_{B} = 200$

Input Return Loss

- S_{11} (dB) vs. Frequency (GHz)
 - 5 V, $R_{B} = 1 \text{ k}$
 - 3.3 V, $R_{B} = 200$

Output Return Loss

- S_{22} (dB) vs. Frequency (GHz)
 - 5 V, $R_{B} = 1 \text{ k}$
 - 3.3 V, $R_{B} = 200$

P_{1dB}

- P_{1dB} (dBm) vs. Frequency (GHz)
 - 5 V, $R_{B} = 400$
 - 3.3 V, $R_{B} = 200$

OIP_{3}

- OIP_{3} (dBm) vs. Frequency (GHz)
 - 5 V, $R_{B} = 400$
 - 3.3 V, $R_{B} = 200$
Low Noise Amplifier
18 - 31.5 GHz

Typical Performance Curves VDD = 5 V, I_{DD} varied by R_{B}

Gain

Noise Figure

Input Return Loss

Output Return Loss

P_{1dB}

OIP3
Lead Free 2 mm 8 Lead PDFN Package†

† Reference Application Note S2083 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 1 requirements.
Plating is 100% Matte Tin over Copper