Low Noise Amplifier
18 - 31.5 GHz

Features
- Noise Figure: 2.5 dB @ 24 GHz
- High Gain: 23 dB @ 24 GHz
- 50 Ω match on input and output
- Single Voltage Bias: 3 V to 5 V range
- Integrated Active Bias Circuit
- Current adjustable from 1 mA - 80 mA
- Lead-Free 2 mm 8-lead PDFN Package
- Halogen-Free “Green” Mold Compound
- RoHS* Compliant

Description
The MAAL-011129 is an easy-to-use three stage low noise amplifier with high gain and broadband 50 Ω match. It is designed for operation from 18 to 31.5 GHz and housed in a lead-free 2 mm 8-lead PDFN plastic package.

The MAAL-011129 has an integrated active bias circuit and bias tee to allow direct connection to V_{DD} without external chokes or DC blocks. The bias current is set by a simple external resistor, R_B, so the user can customize the power consumption. When $V_{BIAS} = 0$ V, the device is placed in power down mode.

The MAAL-011129 offers a surface-mount, easy-to-use, low noise amplifier solution that is well suited to diverse receiver applications such as VSAT, Point-to-Point and 24 GHz ISM.

Ordering Information\(^1,2\)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAL-011129-TR3000</td>
<td>3000 piece reel</td>
</tr>
<tr>
<td>MAAL-011129-SMB</td>
<td>Sample Board</td>
</tr>
</tbody>
</table>

\(^1\) Reference Application Note M513 for reel size information.
\(^2\) All sample boards include 5 loose parts.

Low Noise Amplifier
18 - 31.5 GHz

Electrical Specifications: Freq. = 24 GHz, \(T_A = 25°C \), \(V_{DD} = 5 \text{ V} \), \(R_B = 1 \text{ kΩ} \), \(Z_0 = 50 \text{ Ω} \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise Figure</td>
<td></td>
<td>dB</td>
<td>2.5</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>Gain</td>
<td>(P_{IN} = -20 \text{ dBM})</td>
<td>dB</td>
<td>20</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>(P_{IN} = -20 \text{ dBM})</td>
<td>dB</td>
<td></td>
<td>-13</td>
<td></td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>(P_{IN} = -20 \text{ dBM})</td>
<td>dB</td>
<td></td>
<td>-13</td>
<td></td>
</tr>
<tr>
<td>Output IP3</td>
<td>(P_{IN} = -22 \text{ dBM/tone}) (10 MHz Tone Spacing)</td>
<td>dBm</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output P1dB</td>
<td></td>
<td>dBm</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation</td>
<td>(P_{IN} = -20 \text{ dBM})</td>
<td>dB</td>
<td></td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Bias Current</td>
<td></td>
<td>mA</td>
<td>50</td>
<td>65</td>
<td></td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings\(^4,5\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>10 dBM</td>
</tr>
<tr>
<td>Operating Voltage</td>
<td>6 V</td>
</tr>
<tr>
<td>Junction Temperature(^6,7)</td>
<td>+150°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
</tbody>
</table>

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

4. Exceeding any one or combination of these limits may cause permanent damage to this device.
5. MACOM does not recommend sustained operation near these survivability limits.
6. Operating at nominal conditions with \(T_J \leq +150°C \) will ensure \(\text{MTTF} > 1 \times 10^6 \text{ hours} \).
7. Junction Temperature (\(T_J \)) = \(T_C + \Theta_{jc} \times (V \times I) \)
 Typical thermal resistance (\(\Theta_{jc} \)) = 102°C/W.
 a) \(T_C = +25°C \),
 \(T_J = 51°C @ 5 \text{ V}, 50 \text{ mA} \)
 b) \(T_C = +85°C \),
 \(T_J = 111°C @ 5 \text{ V}, 50 \text{ mA} \)
Application Information

The MAAL-011129 is designed to be easy to use yet provide high performance. The ultra small size, with no matching, and simple bias application allows easy placement on system boards.

Single Bias Operation

Connecting V_{DD} to V_{BIAS} using an external resistor R_B enables single bias operation of the amplifier, and the value of external resistor R_B sets the desired current I_{DD}. The following table shows drain current (I_{DD}) versus external resistor (R_B) values for V_{DD} voltages of 5 V and 3.3 V:

<table>
<thead>
<tr>
<th>V_{DD} = 3.3 V</th>
<th>V_{DD} = 5 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_B (Ω)</td>
<td>I_{DD} (mA)</td>
</tr>
<tr>
<td>Open</td>
<td>15</td>
</tr>
<tr>
<td>200</td>
<td>50</td>
</tr>
<tr>
<td>400</td>
<td>40</td>
</tr>
<tr>
<td>1k</td>
<td>30</td>
</tr>
<tr>
<td>2k</td>
<td>25</td>
</tr>
</tbody>
</table>

With pin 4 (V_{BIAS}) left open the amplifier will default to low power mode. When pin 4 (V_{BIAS}) is set to 0 V through RB, the device enters power down mode. In order to use power down mode a second supply is required that directly drives the RB resistor.

Grounding

It is recommended that the total ground (common mode) inductance not exceed 0.03 nH (30 pH). This is equivalent to placing at least four 8-mil (200-μm) diameter vias under the device, assuming an 8-mil (200-μm) thick RF layer to ground.
Typical Performance Curves $V_{DD} = 5\, \text{V}$, $R_B = 1\, \text{k}\Omega$

Gain

![Gain Diagram](image)

Noise Figure

![Noise Figure Diagram](image)

Input Return Loss

![Input Return Loss Diagram](image)

Output Return Loss

![Output Return Loss Diagram](image)

$P_{1\text{dB}}$

![$P_{1\text{dB}}$ Diagram](image)

OIP3

![OIP3 Diagram](image)
Typical Performance Curves $V_{DD} = 3.3\, V$ & $5\, V$

Gain

- $S_{21} (\text{dB})$
- Frequency (GHz)
- 5 V, $R_B = 1\, k$
- 3.3 V, $R_B = 200$

Noise Figure

- Noise Figure (dB)
- Frequency (GHz)
- 5 V, $R_B = 1\, k$
- 3.3 V, $R_B = 200$

Input Return Loss

- $S_{11} (\text{dB})$
- Frequency (GHz)
- 5 V, $R_B = 1\, k$
- 3.3 V, $R_B = 200$

Output Return Loss

- $S_{22} (\text{dB})$
- Frequency (GHz)
- 5 V, $R_B = 1\, k$
- 3.3 V, $R_B = 200$

P_{1dB}

- $P_{1dB} (\text{dBm})$
- Frequency (GHz)
- 5 V, $R_B = 400$
- 3.3 V, $R_B = 200$

OIP3

- OIP3 (dBm)
- Frequency (GHz)
- 5 V, $R_B = 400$
- 3.3 V, $R_B = 200$
Typical Performance Curves VDD = 5 V, I_{DD} varied by R_B

Gain

Gain vs Frequency for different R_B values.

Noise Figure

Noise Figure vs Frequency for different R_B values.

Input Return Loss

Input Return Loss vs Frequency for different R_B values.

Output Return Loss

Output Return Loss vs Frequency for different R_B values.

P1dB

P1dB vs Frequency for different R_B values.

OIP3

OIP3 vs Frequency for different R_B values.
Low Noise Amplifier

18 - 31.5 GHz

Lead Free 2 mm 8 Lead PDFN Package†

† Reference Application Note S2083 for lead-free solder reflow recommendations.

Meets JEDEC moisture sensitivity level 1 requirements.

Plating is 100% Matte Tin over Copper
MACOM Technology Solutions Inc. All rights reserved.
Information in this document is provided in connection with MACOM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.