Features

- Noise Figure: 2.5 dB @ 24 GHz
- High Gain: 23 dB @ 24 GHz
- 50 Ω match on input and output
- Single Voltage Bias: 3 V to 5 V range
- Integrated Active Bias Circuit
- Current adjustable from 1 mA - 80 mA
- Lead-Free 2 mm 8-lead PDFN Package
- Halogen-Free “Green” Mold Compound
- RoHS* Compliant

Description

The MAAL-011129 is an easy-to-use three stage low noise amplifier with high gain and broadband 50 Ω match. It is designed for operation from 18 to 31.5 GHz and housed in a lead-free 2 mm 8-lead PDFN plastic package.

The MAAL-011129 has an integrated active bias circuit and bias tee to allow direct connection to V_DD without external chokes or DC blocks. The bias current is set by a simple external resistor, R_b, so the user can customize the power consumption. When V_BIAS = 0 V, the device is placed in power down mode.

The MAAL-011129 offers a surface-mount, easy-to-use, low noise amplifier solution that is well suited to diverse receiver applications such as VSAT, Point-to-Point and 24 GHz ISM.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAL-011129-TR3000</td>
<td>3000 piece reel</td>
</tr>
<tr>
<td>MAAL-011129-SMB</td>
<td>Sample Board</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.
2. All sample boards include 5 loose parts.

Pin Configuration

3. The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

Electrical Specifications:
Freq. = 24 GHz, $T_A = 25°C$, $V_{DD} = 5\, V$, $R_B = 1\, k\Omega$, $Z_0 = 50\, \Omega$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise Figure</td>
<td></td>
<td>dB</td>
<td>2.5</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>Gain</td>
<td>$P_{IN} = -20, \text{dBm}$</td>
<td>dB</td>
<td>20</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>$P_{IN} = -20, \text{dBm}$</td>
<td>dB</td>
<td></td>
<td>-13</td>
<td></td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>$P_{IN} = -20, \text{dBm}$</td>
<td>dB</td>
<td></td>
<td>-13</td>
<td></td>
</tr>
<tr>
<td>Output IP3</td>
<td>$P_N = -22, \text{dBm/tone (10 MHz Tone Spacing)}$</td>
<td>dBm</td>
<td></td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Output P1dB</td>
<td></td>
<td>dBm</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Isolation</td>
<td>$P_{IN} = -20, \text{dBm}$</td>
<td>dB</td>
<td></td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Bias Current</td>
<td></td>
<td>mA</td>
<td>50</td>
<td>65</td>
<td></td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>10 dBm</td>
</tr>
<tr>
<td>Operating Voltage</td>
<td>6 V</td>
</tr>
<tr>
<td>Junction Temperature5,7</td>
<td>+150°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
</tbody>
</table>

4. Exceeding any one or combination of these limits may cause permanent damage to this device.
5. MACOM does not recommend sustained operation near these survivability limits.
6. Operating at nominal conditions with $T_J \leq +150°C$ will ensure $MTTF > 1 \times 10^6$ hours.
7. Junction Temperature ($T_J = T_C + \Theta_{jc} \cdot (V \cdot I)$

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.
Application Information

The MAAL-011129 is designed to be easy to use yet provide high performance. The ultra small size, with no matching, and simple bias application allows easy placement on system boards.

Single Bias Operation

Connecting V_{DD} to V_{BIAS} using an external resistor R_B enables single bias operation of the amplifier, and the value of external resistor R_B sets the desired current I_{DD}. The following table shows drain current (I_{DD}) versus external resistor (R_B) values for V_{DD} voltages of 5 V and 3.3 V:

<table>
<thead>
<tr>
<th>V_{DD}</th>
<th>R_B (Ω)</th>
<th>I_{DD} (mA)</th>
<th>R_B (Ω)</th>
<th>I_{DD} (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3 V</td>
<td>Open</td>
<td>15</td>
<td>Open</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>50</td>
<td>200</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>40</td>
<td>400</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>1k</td>
<td>30</td>
<td>1k</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2k</td>
<td>25</td>
<td>2k</td>
<td>40</td>
</tr>
</tbody>
</table>

With pin 4 (V_{BIAS}) left open the amplifier will default to low power mode. When pin 4 (V_{BIAS}) is set to 0 V through R_B, the device enters power down mode. In order to use power down mode a second supply is required that directly drives the R_B resistor.

Grounding

It is recommended that the total ground (common mode) inductance not exceed 0.03 nH (30 pH). This is equivalent to placing at least four 8-mil (200-μm) diameter vias under the device, assuming an 8-mil (200-μm) thick RF layer to ground.
Low Noise Amplifier
18 - 31.5 GHz

Typical Performance Curves $V_{DD} = 5\,\text{V}, R_B = 1\,\text{k}\Omega$

- **Gain**:
 - Frequency (GHz) vs. S_{21} (dB)
 - $+25^\circ\text{C}$, -40°C, $+85^\circ\text{C}$

- **Noise Figure**:
 - Frequency (GHz) vs. Noise Figure (dB)
 - $+25^\circ\text{C}$, -45°C, $+85^\circ\text{C}$

- **Input Return Loss**:
 - Frequency (GHz) vs. S_{11} (dB)
 - $+25^\circ\text{C}$, -45°C, $+85^\circ\text{C}$

- **Output Return Loss**:
 - Frequency (GHz) vs. S_{22} (dB)
 - $+25^\circ\text{C}$, -40°C, $+85^\circ\text{C}$

- **P_{1dB}**:
 - Frequency (GHz) vs. P_{1dB} (dBm)
 - $+25^\circ\text{C}$, -40°C, $+85^\circ\text{C}$

- **OIP3**:
 - Frequency (GHz) vs. OIP3 (dBm)
 - $+25^\circ\text{C}$, -40°C, $+85^\circ\text{C}$
Typical Performance Curves VDD = 5 V, I_{DD} varied by R_B

- **Gain**
 - Frequency (GHz) vs. S_{21} (dB)
 - R_B values: open, 1 k, 400, 40

- **Noise Figure**
 - Frequency (GHz) vs. Noise Figure (dB)
 - R_B values: open, 1 k, 400, 40

- **Input Return Loss**
 - Frequency (GHz) vs. S_{11} (dB)
 - R_B values: open, 1 k, 400, 40

- **Output Return Loss**
 - Frequency (GHz) vs. S_{22} (dB)
 - R_B values: open, 1 k, 400, 40

- **P_{1dB}**
 - Frequency (GHz) vs. P_{1dB} (dBm)
 - R_B values: open, 1 k, 400, 40

- **OIP3**
 - Frequency (GHz) vs. OIP3 (dBm)
 - R_B values: open, 1 k, 400, 40
Lead Free 2 mm 8 Lead PDFN Package†

† Reference Application Note S2083 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 1 requirements.
Plating is 100% Matte Tin over Copper