Low Noise Amplifier
22 - 38 GHz

Features
- 19 dB Small Signal Gain
- 2.5 dB Noise Figure
- Single 3.3 V Bias
- Lead-Free 3 mm 16-Lead PQFN Package
- 100% RF Tested
- RoHS Compliant

Description
The MAAL-011111 is a three stage 22 - 38 GHz GaAs MMIC low noise amplifier. This device has a small signal gain of 19 dB with a noise figure of 2.5 dB.

This lead-free, 3 mm QFN package requires only a single positive bias supply. The devices uses MACOM’s GaAs transistor technology, ensuring high repeatability and uniformity.

The device is well suited to multiple receiver applications which require broadband performance with simple bias requirements and the ease of volume manufacturing with 3 mm QFN packaging.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAL-011111-TR0500</td>
<td>500 pc reel</td>
</tr>
<tr>
<td>MAAL-011111-TR1000</td>
<td>1K pc reel</td>
</tr>
<tr>
<td>MAAL-011111-000SMB</td>
<td>Sample Evaluation board</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.
2. All sample boards include 5 loose parts.

For further information and support please visit: https://www.macom.com/support

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.
Visit www.macom.com for additional data sheets and product information.

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.
Low Noise Amplifier
22 - 38 GHz

Electrical Specifications: Freq: 22 - 38 GHz, \(V_D = 3.3 \) V, \(T_A = +25^\circ C \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Signal Gain(^4)</td>
<td>dB</td>
<td>17</td>
<td>19</td>
<td>—</td>
</tr>
<tr>
<td>Gain Flatness</td>
<td>dB</td>
<td>—</td>
<td>±2</td>
<td>—</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>dB</td>
<td>—</td>
<td>10</td>
<td>—</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>dB</td>
<td>—</td>
<td>13</td>
<td>—</td>
</tr>
<tr>
<td>Reverse isolation</td>
<td>dB</td>
<td>—</td>
<td>45</td>
<td>—</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>dB</td>
<td>—</td>
<td>2.5</td>
<td>—</td>
</tr>
<tr>
<td>Output P1dB</td>
<td>dBm</td>
<td>—</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>Supply Current ((I_D))</td>
<td>mA</td>
<td>—</td>
<td>55</td>
<td>65</td>
</tr>
</tbody>
</table>

4. Specified over 24-36 GHz

Absolute Maximum Ratings\(^5,6\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>7 VDC</td>
</tr>
<tr>
<td>Supply Current</td>
<td>70 mA</td>
</tr>
<tr>
<td>Input Power</td>
<td>12.0 dBm</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +165°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Channel Temperature(^7)</td>
<td>+150°C</td>
</tr>
</tbody>
</table>

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1A devices.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.
Typical Performance Curves

Gain

- S_{21} (dB) vs. Frequency (GHz)
- Varying supply voltage (3.0 V, 3.3 V, 3.6 V)

Reverse Isolation

- S_{12} (dB) vs. Frequency (GHz)
- Varying supply voltage (3.0 V, 3.3 V, 3.6 V)

Input Return Loss

- S_{11} (dB) vs. Frequency (GHz)
- Varying supply voltage (3.0 V, 3.3 V, 3.6 V)

Output Return Loss

- S_{22} (dB) vs. Frequency (GHz)
- Varying supply voltage (3.0 V, 3.3 V, 3.6 V)
Low Noise Amplifier
22 - 38 GHz

Typical Performance Curves

Noise Figure

![Noise Figure Graph]

P_{1dB}

![P_{1dB} Graph]

Gain Over Temperature

![Gain Over Temperature Graph]
Recommended Board Layout

(DXF file available from website)

8. Ground plane conductor should be removed under the corners of the package, as shown.

Biasing - The device is operated with a single, positive bias supply. The device performance is insensitive to changes in bias condition; however, gain and power handling can be slightly improved with higher bias conditions without significantly affecting the noise figure performance. Typical biasing conditions within the specified performance ranges are $V_D = 3 \, \text{V}$, $50 \, \text{mA}$, $V_D = 3.3 \, \text{V}$, $55 \, \text{mA}$, $V_D = 3.6 \, \text{V}$, $60 \, \text{mA}$.
Lead-Free 3 mm 16-Lead PQFN†

† Reference Application Note S2083 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 1 requirements.
Plating is NiPdAuAg