Features

- Low Noise Figure
- Excellent Input Return Loss
- Single Voltage Bias 3 V
- Integrated Active Bias Circuit
- Current Adjustable 20 - 80 mA with an External Resistor
- High Linearity, OIP3 >32 dBm
- Small Package: 2 mm PDFN-8LD
- RoHS* Compliant

Description

The MAAL-010705 is a high dynamic range single stage MMIC LNA with excellent linearity and low noise figure designed for operation from 0.5 to 1.6 GHz. The LNA is packaged in an RoHS compliant leadless 2 mm 8-lead PDFN package.

This MMIC has an integrated active bias circuit allowing direct connection to 3 V voltage supply and minimizing variation over temperature and process. The bias current and gain can be set with external resistors to allow the user to customize the current and gain value to fit the application.

The MAAL-010705 offers less than 0.7 dB noise figure, more than 32 dBm OIP3 and 20 dB input return loss. The excellent input match, low noise figure and high OIP3 along with the flexibility of setting current and gain make this LNA ideal for 3G and 4G cellular infrastructure applications.

For optimum performance above 1.6 GHz the MAAL-010706 is recommended. The MAAL-010705 and MAAL-010706 share the package type and footprint.

Pin Configuration

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N/C</td>
<td>No Connection</td>
</tr>
<tr>
<td>2</td>
<td>RF_IN</td>
<td>RF Input</td>
</tr>
<tr>
<td>3</td>
<td>RF GND</td>
<td>RF Ground</td>
</tr>
<tr>
<td>4</td>
<td>V_BIAS</td>
<td>Bias Voltage</td>
</tr>
<tr>
<td>5</td>
<td>FB</td>
<td>Feedback</td>
</tr>
<tr>
<td>6</td>
<td>N/C</td>
<td>No Connection</td>
</tr>
<tr>
<td>7</td>
<td>RF_OUT</td>
<td>RF Output</td>
</tr>
<tr>
<td>8</td>
<td>N/C</td>
<td>No Connection</td>
</tr>
</tbody>
</table>

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAL-010705-TR3000</td>
<td>tape and reel</td>
</tr>
<tr>
<td>MAAL-010705-001SMB</td>
<td>evaluation board</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.
2. All sample boards include 5 loose parts.

Electrical Specifications: Freq = 0.9 GHz, V_D = 4 V, T_A = +25ºC, Z_0 = 50 Ω

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>—</td>
<td>dB</td>
<td>18</td>
<td>21</td>
<td>—</td>
</tr>
<tr>
<td>Output IP3</td>
<td>P_{OUT} = 5 dBm, Tone Spacing = 1 MHz</td>
<td>dBm</td>
<td>—</td>
<td>32</td>
<td>—</td>
</tr>
<tr>
<td>Output P1dB</td>
<td>—</td>
<td>dBm</td>
<td>17.5</td>
<td>18.5</td>
<td>—</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>—</td>
<td>dB</td>
<td>—</td>
<td>19</td>
<td>—</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>—</td>
<td>dB</td>
<td>—</td>
<td>18</td>
<td>—</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>—</td>
<td>dB</td>
<td>—</td>
<td>0.50</td>
<td>—</td>
</tr>
<tr>
<td>Total Current</td>
<td>I_{DO} = I_D + I_{BIAS}</td>
<td>mA</td>
<td>—</td>
<td>60</td>
<td>70</td>
</tr>
</tbody>
</table>

3. V_D and V_{BIAS} are connected together to +4 V, R3 = 150 Ω and R4 = 240 Ω, reference recommended schematic on page 8.

Absolute Maximum Ratings:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>5.5 V</td>
</tr>
<tr>
<td>Current</td>
<td>100 mA</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>600 mW</td>
</tr>
<tr>
<td>RF Input Power</td>
<td>20 dBm</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-55ºC to +150ºC</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40ºC to +85ºC</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>+150ºC</td>
</tr>
</tbody>
</table>

4. Exceeding any one or combination of these limits may cause permanent damage to this device.
5. MACOM does not recommend sustained operation near these survivability limits.
6. Typical thermal resistance (Θjc) = 45ºC/W.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these class 1A devices.
Low Noise Amplifier
0.5 - 1.6 GHz

Typical Performance Curves: 4 V (over current)

Input Return Loss

![Graph showing input return loss vs frequency for different current values.]

Output Return Loss

![Graph showing output return loss vs frequency for different current values.]

Gain

![Graph showing gain vs frequency for different current values.]

Noise Figure

![Graph showing noise figure vs frequency for different current values.]

OIP3

![Graph showing OIP3 vs frequency for different current values.]

P1dB

![Graph showing P1dB vs frequency for different current values.]

For further information and support please visit: https://www.macom.com/support

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.
Typical Performance Curves: 4 V (over R3)

- **Gain**
 - Graph showing variation of gain with output power (Pout) for different R3 values.
 - Key: R3(Ω) = 51, 91, 150, 300, 560.

- **Noise Figure & Fmin**
 - Graph showing noise figure (NF) and minimum noise figure (Fmin) variation with output power (Pout) and R3.

- **OIP3**
 - Graph showing variation of OIP3 with output power (Pout) for different R3 values.
 - Key: R3(Ω) = 51, 91, 150, 300, 560.

- **P1dB**
 - Graph showing variation of P1dB with output power (Pout) and R3.

For further information and support please visit: https://www.macom.com/support
Low Noise Amplifier
0.5 - 1.6 GHz

Typical Performance Curves: 4 V (over temperature)

Input Return Loss

Output Return Loss

Gain

Noise Figure

OIP3

P1dB

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:
https://www.macom.com/support
Low Noise Amplifier
0.5 - 1.6 GHz

Typical Performance Curves: 3 V

Input Return Loss

Output Return Loss

Gain

Noise Figure

OIP3

P1dB
Low Noise Amplifier
0.5 - 1.6 GHz

S-Parameters\(^7\): 4 V

\(\text{Reverse Isolation}\)

\(\text{Gain}\)

\(\text{Output Return Loss}\)

\(\text{Input Return Loss}\)

7. S-Parameters files are available for download at macomtech.com.
Evaluation Board

The above thru line can be provided to de-embed the losses of the evaluation board.

Schematic

V_{\text{BIAS}} and V_{\text{D}} are separate connections on the evaluation board to give the option of varying I_d without changing R_4. They can be connected together to a single voltage supply during the measurement and in the final layout implementation of the PCB. If two different voltage supplies are used then apply V_{\text{D}} first and then V_{\text{BIAS}} to turn on the LNA. To turn off the LNA disconnect V_{\text{BIAS}} first and then V_{\text{D}}. R_3 is varied to obtain different levels of gain. R_4 is varied to change the drain current I_d.

Optional Schematic

Optional schematic illustrates alternate grounding choice for C_{13} through pin 5. Pin 5 is grounded internally in the package. Electrical performance of both layout methods is identical.

Off-Chip Component Values

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>3.3 pF</td>
<td>0402</td>
</tr>
<tr>
<td>C_{7, 8, 10}</td>
<td>1000 pF</td>
<td>0402</td>
</tr>
<tr>
<td>C_{12, 13}</td>
<td>100 pF</td>
<td>0402</td>
</tr>
<tr>
<td>C_{14}</td>
<td>100 µF</td>
<td>Tantalum, Size D</td>
</tr>
<tr>
<td>L_1</td>
<td>9 nH</td>
<td>0402</td>
</tr>
<tr>
<td>L_2</td>
<td>15 nH</td>
<td>0402</td>
</tr>
<tr>
<td>R_3</td>
<td>150 Ω</td>
<td>0402</td>
</tr>
<tr>
<td>R_4</td>
<td>240 Ω</td>
<td>0402</td>
</tr>
</tbody>
</table>
Low Noise Amplifier
0.5 - 1.6 GHz

Lead-Free 2 mm 8-Lead PDFN†

† Reference Application Note S2083 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 1 requirements.