Features
- Low Noise Figure
- Excellent Input Return Loss
- Single Voltage Bias 4 V
- Integrated Active Bias Circuit
- Current Adjustable 20 - 80 mA with an External Resistor
- High Linearity, OIP3 >32 dBm
- 8-Lead Hermetic Package
- RoHS* Compliant

Description
The MAAL-010705-CR10 is a high dynamic range single stage MMIC LNA with excellent linearity and low noise figure designed for operation from 0.5 to 3 GHz. The LNA is packaged in an RoHS compliant, 8-lead hermetically sealed ceramic package.

This MMIC has an integrated active bias circuit allowing direct connection to 4 V voltage supply and minimizing variation over temperature and process. The bias current and gain can be set with external resistors to allow the user to customize the current and gain value to fit the application.

The MAAL-010705-CR10 offers less than 0.7 dB noise figure, more than 32 dBm OIP3 and 20 dB output return loss. The excellent match, low noise figure and high OIP3 along with the flexibility of setting current and gain make this LNA ideal UHF, L, and S-band satellite applications.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAL-010705-CR10</td>
<td>Chip Scale Package</td>
</tr>
</tbody>
</table>

Functional Block Diagram

Pin Configuration

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N/C</td>
<td>No Connection</td>
</tr>
<tr>
<td>2</td>
<td>RF IN</td>
<td>RF Input</td>
</tr>
<tr>
<td>3</td>
<td>Bias CCT</td>
<td>Bias Circuit Reference</td>
</tr>
<tr>
<td>4</td>
<td>V BIAS</td>
<td>Bias Voltage</td>
</tr>
<tr>
<td>5</td>
<td>RF GND</td>
<td>RF Ground</td>
</tr>
<tr>
<td>6</td>
<td>N/C</td>
<td>No Connection</td>
</tr>
<tr>
<td>7</td>
<td>RF OUT</td>
<td>RF Output</td>
</tr>
<tr>
<td>8</td>
<td>N/C</td>
<td>No Connection</td>
</tr>
</tbody>
</table>

1. The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.
Low Noise Amplifier

0.5 - 3 GHz

Electrical Specifications

2. **Freq** = 0.9 GHz, **$V_D = 4$ V, 25°C, $Z_0 = 50 \, \Omega$**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>—</td>
<td>dB</td>
<td>18</td>
<td>21</td>
<td>—</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>—</td>
<td>dB</td>
<td>—</td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>—</td>
<td>dB</td>
<td>—</td>
<td>27</td>
<td>—</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>—</td>
<td>dB</td>
<td>—</td>
<td>0.7</td>
<td>—</td>
</tr>
<tr>
<td>Output IP3</td>
<td>$P_{\text{OUT}} = 5 , \text{dBm}, \text{Tone Spacing} = 1 , \text{MHz}$</td>
<td>dBm</td>
<td>—</td>
<td>33</td>
<td>—</td>
</tr>
<tr>
<td>Output P1dB</td>
<td>—</td>
<td>dBm</td>
<td>17.5</td>
<td>18.5</td>
<td>—</td>
</tr>
<tr>
<td>Total Current</td>
<td>$I_{\text{DD}} = I_D + I_{\text{BIAS}}$</td>
<td>mA</td>
<td>—</td>
<td>60</td>
<td>70</td>
</tr>
</tbody>
</table>

2. V_D and V_{BIAS} are connected together to 4 V, $R_3 = 150 \, \Omega$ and $R_4 = 240 \, \Omega$; reference recommended schematic on page 5.

Absolute Maximum Ratings

3. Exceeding any one or combination of these limits may cause permanent damage to this device.
4. MACOM does not recommend sustained operation near these survivability limits.
5. Typical thermal resistance (Θ_{jc}) = 45°C/W.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>5.5 V</td>
</tr>
<tr>
<td>Current</td>
<td>100 mA</td>
</tr>
<tr>
<td>RF Input Power</td>
<td>20 dBm</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-55°C to +150°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>+150°C</td>
</tr>
</tbody>
</table>

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.
Typical Performance Curves: 4 V (over temperature)

Gain

- **S21 (dB)**
 - Frequency (GHz) from 0.5 to 3.0
 - Temperature: +25°C, -40°C, +85°C

Reverse Isolation

- **S12 (dB)**
 - Frequency (GHz) from 0.5 to 3.0
 - Temperature: +25°C, -40°C, +85°C

Input Return Loss

- **S11 (dB)**
 - Frequency (GHz) from 0.5 to 3.0
 - Temperature: +25°C, -40°C, +85°C

Output Return Loss

- **S22 (dB)**
 - Frequency (GHz) from 0.5 to 3.0
 - Temperature: +25°C, -40°C, +85°C

Noise Figure

- **Noise Figure (dB)**
 - Frequency (GHz) from 0.5 to 3.0
 - Temperature: +25°C, -40°C, +85°C

Visit www.macom.com for additional data sheets and product information.
Low Noise Amplifier
0.5 - 3 GHz

Typical Performance Curves @ 900 MHz, 4 V

OIP3 High vs. Output Power

```
20 25 30 35 40
0 2 4 6 8 10 12 14 16 18 20
Output Power (dBm)

OIP3 (dBm)
```

OIP3 Low vs. Output Power

```
20 25 30 35 40
0 2 4 6 8 10 12 14 16 18 20
Output Power (dBm)

OIP3 (dBm)
```

Gain vs. Output Power

```
18 19 20 21 22 23
0 2 4 6 8 10 12 14 16 18 20
Output Power (dBm)

Gain (dB)
```

P1dB vs. Frequency

```
17.6 17.8 18.0 18.2 18.4 18.6
800 820 840 860 880 900
Frequency (MHz)

P1dB (dBm)
```

OIP3 vs. Frequency

```
30 32 34 36 38 40
800 820 840 860 880 900
Frequency (MHz)

OIP3 (dBm)
```
Low Noise Amplifier
0.5 - 3 GHz

Recommended Layout

Off-Chip Component Values

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>3.3 pF</td>
<td>0402</td>
</tr>
<tr>
<td>C7, C8, C10</td>
<td>1000 pF</td>
<td>0402</td>
</tr>
<tr>
<td>C12, C13</td>
<td>100 pF</td>
<td>0402</td>
</tr>
<tr>
<td>C2, C14</td>
<td>4.7 µF</td>
<td>Tantalum, 1210</td>
</tr>
<tr>
<td>L1</td>
<td>9 nH</td>
<td>0402</td>
</tr>
<tr>
<td>L2</td>
<td>15 nH</td>
<td>0402</td>
</tr>
<tr>
<td>R3</td>
<td>150 Ω</td>
<td>0402</td>
</tr>
<tr>
<td>R4</td>
<td>240 Ω</td>
<td>0402</td>
</tr>
</tbody>
</table>

Bias Information

V_{BIAS} and V_D are separate connections on the evaluation board to give the option of varying I_D without changing R4. They can be connected together to a single voltage supply during the measurement and in the final layout implementation of the PCB. If two different voltage supplies are used then apply V_D first and then V_{BIAS} to turn on the LNA. To turn off the LNA disconnect V_{BIAS} first and then V_D. R3 is varied to obtain different levels of gain. R4 is varied to change the drain current I_D.

Schematic
Lead-Free Hermetic CR10 Package†

† Reference Application Note S2083 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 1 requirements.
Plating is Au over Ni.
MACOM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with MACOM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppeds or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.
Visit www.macom.com for additional data sheets and product information.