MAAL-010528

X-Band Low Noise Amplifier
8 - 12 GHz

Rev. V6

Features
- 1.6 dB Noise Figure
- Single 4 V Bias @ 60 mA
- Fully Internally Matched to 50 Ω
- Lead-Free 3 mm 16-Lead PQFN Package
- Halogen-Free “Green” Mold Compound
- RoHS* Compliant

Description
The MAAL-010528 is a high performance X-band GaAs LNA, housed in a miniature, lead-free 3 mm PQFN surface mount plastic package. This MMIC operates from 8 to 12 GHz providing a nominal gain of 20 dB with excellent gain flatness, high OIP3 linearity of 26 dBm, and a mid-band noise figure of 1.6 dB. The part features a self-bias architecture which requires only a single, positive supply.

The device is internally matched to 50 Ω input/output and is well suited to multiple applications including V SAT, radar and microwave radios due to the part’s ease of use and excellent performance parameters.

Ordering Information 1,2

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAL-010528-TR0500</td>
<td>500 piece reel</td>
</tr>
<tr>
<td>MAAL-010528-001SMB</td>
<td>Sample Board</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.
2. All sample boards include 5 loose parts.

Functional Schematic

Pin Configuration

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Pin Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
<td>N/C</td>
<td>No Connection</td>
</tr>
<tr>
<td>3</td>
<td>RF IN</td>
<td>RF Input</td>
</tr>
<tr>
<td>4</td>
<td>N/C</td>
<td>No Connection</td>
</tr>
<tr>
<td>5, 6, 7</td>
<td>V G1, V G2</td>
<td>Gate Voltage 1, 2</td>
</tr>
<tr>
<td>8, 9</td>
<td>N/C</td>
<td>No Connection</td>
</tr>
<tr>
<td>10</td>
<td>RF OUT</td>
<td>RF Output</td>
</tr>
<tr>
<td>11, 12</td>
<td>N/C</td>
<td>No Connection</td>
</tr>
<tr>
<td>13</td>
<td>V DD2</td>
<td>Bias Voltage 2</td>
</tr>
<tr>
<td>14, 15</td>
<td>N/C</td>
<td>No Connection</td>
</tr>
<tr>
<td>16</td>
<td>V DD1</td>
<td>Bias Voltage 1</td>
</tr>
<tr>
<td>Paddle</td>
<td></td>
<td>RF and DC Ground</td>
</tr>
</tbody>
</table>

3. For self-bias, external components C7 through C12 are optional. No V G bias is needed. If C7 through C12 are removed, traces must also be removed.
4. For optional adjustment of self-bias, apply DC gate voltage between -1 V and +0.3 V. External components C7 through C12 are required.
5. The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:
https://www.macom.com/support
X-Band Low Noise Amplifier
8 - 12 GHz

Electrical Specifications: \(T_A = 25^\circ C, V_{DD} = 4 \text{ V}, Z_0 = 50 \text{ \Omega} \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>8 - 12 GHz</td>
<td>dB</td>
<td>17.5</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Noise figure</td>
<td>8 GHz</td>
<td>dB</td>
<td>—</td>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>10 GHz</td>
<td></td>
<td></td>
<td>1.8</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>12 GHz</td>
<td></td>
<td></td>
<td>2.1</td>
<td>2.8</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>8 - 12 GHz</td>
<td>dB</td>
<td>—</td>
<td>10</td>
<td>—</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>8 - 12 GHz</td>
<td>dB</td>
<td>—</td>
<td>13</td>
<td>—</td>
</tr>
<tr>
<td>P1dB</td>
<td>8 - 12 GHz</td>
<td>dBm</td>
<td>—</td>
<td>14</td>
<td>—</td>
</tr>
<tr>
<td>OIP3</td>
<td>8 - 12 GHz</td>
<td>dBm</td>
<td>—</td>
<td>26</td>
<td>—</td>
</tr>
<tr>
<td>Current</td>
<td>—</td>
<td>mA</td>
<td>—</td>
<td>60</td>
<td>75</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>22 dBm</td>
</tr>
<tr>
<td>Operating Voltage</td>
<td>6 V</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
</tbody>
</table>

6. Exceeding any one or combination of these limits may cause permanent damage to this device.
7. MACOM does not recommend sustained operation near these survivability limits.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1B devices.
Recommended PCB

![Recommended PCB Diagram]

Recommended Grounding Under Device

![Recommended Grounding Diagram]

8. For best performance, ensure proper grounding at the device. Recommended grounding is 9 vias beneath the ground paddle, each with 10-mil diameter. Contact MACOM technical support for recommended PCB layout details.

Application Schematic

![Application Schematic Diagram]

9. For self-bias, external components C7 through C12 are optional. No V_G bias is needed. If C7 through C12 are removed, traces must also be removed. When using self-bias, leave Vg1 and Vg2 pins open (do not ground).

10. For optional adjustment of self-bias, apply DC gate voltage between -1 V and +0.3 V. External components C7 through C12 are required.

Parts List

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C4, C7, C10</td>
<td>2.2 pF</td>
<td>0402</td>
</tr>
<tr>
<td>C2, C5, C8, C11</td>
<td>100 pF</td>
<td>0402</td>
</tr>
<tr>
<td>C3, C6, C9, C12</td>
<td>0.01 µF</td>
<td>0402</td>
</tr>
</tbody>
</table>
Typical Performance Curves

Wide-Band Gain and Return Loss

Small-Signal Gain vs. Temperature

Input Return Loss vs. Temperature

Output Return Loss vs. Temperature

Noise Figure vs. Temperature

Noise Figure vs. Supply Voltage
Typical Performance Curves

Small-Signal Gain vs. Supply Voltage

Input Return Loss vs. Supply Voltage

Output Return Loss vs. Supply Voltage

P1dB vs. Temperature

Large-Signal Gain vs. Voltage @ 10 GHz

Large-Signal Gain vs. Temperature @ 10 GHz

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:

https://www.macom.com/support
X-Band Low Noise Amplifier
8 - 12 GHz

Typical Performance Curves

Output IP3 vs. Supply Voltage

![Graph showing Output IP3 vs. Supply Voltage for different supply voltages (3.0V, 3.5V, 4.0V, 5.0V, 6.0V) across a frequency range of 7 to 13 GHz.](image)

Output IP3 vs. Temperature @ 10 GHz

![Graph showing Output IP3 vs. Temperature at 10 GHz for different temperatures (+25°C, -40°C, +85°C).](image)

Output IP3 vs. Temperature for V_DD = 3 V

![Graph showing Output IP3 vs. Temperature for V_DD = 3 V across a frequency range of 7 to 13 GHz.](image)

Output IP3 vs. Temperature for V_DD = 4 V

![Graph showing Output IP3 vs. Temperature for V_DD = 4 V across a frequency range of 7 to 13 GHz.](image)

Output IP3 vs. Temperature for V_DD = 5 V

![Graph showing Output IP3 vs. Temperature for V_DD = 5 V across a frequency range of 7 to 13 GHz.](image)

Typical Bias Current vs. Supply Voltage

<table>
<thead>
<tr>
<th>V_DD1 = V_DD2 (V)</th>
<th>I_DD1 (mA)</th>
<th>I_DD2 (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>14.6</td>
<td>43.4</td>
</tr>
<tr>
<td>4</td>
<td>15.2</td>
<td>44.5</td>
</tr>
<tr>
<td>5</td>
<td>15.6</td>
<td>45.0</td>
</tr>
<tr>
<td>6</td>
<td>15.8</td>
<td>45.1</td>
</tr>
</tbody>
</table>

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.
Lead-Free 3 mm 16-Lead PQFN†

† Reference Application Note S2083 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 1 requirements.
Plating is 100% matte tin plating over copper.