MAAL-010200

Miniature Broadband Gain Stage
70 - 3000 MHz

Rev. V1

MAAL-010200 is a GaAs MMIC amplifier in a lead-free SOT-89 surface mount plastic package. The MAAL-010200 employs a monolithic 1-stage self-biased design featuring a convenient 50 Ω input/output impedance that minimizes the number of external components required. Its broadband design provides usable performance from 500 to 3000 MHz. For operation below 500 MHz contact M/A-COM Technology’s application group for support.

Features
- Low Noise Figure
- High IP3
- Single Supply +3 V, +5 V
- RoHS* Compliant SOT-89 Package

Pin Configuration

<table>
<thead>
<tr>
<th>Pin</th>
<th>Pin Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RF In</td>
<td>RF Input</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>RF Out/Vdd</td>
<td>RF Output & Voltage Bias</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain Compression</td>
<td>6 dB</td>
</tr>
<tr>
<td>Voltage</td>
<td>5.5 volts</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40 °C to +85 °C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65 °C to +150 °C</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.
2. All sample boards include 5 loose parts.

Miniature Broadband Gain Stage
70 - 3000 MHz

Electrical Specifications: Freq. = 500 - 3000 MHz, \(T_A = 25^\circ C, Z_0 = 50 \) Ω

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Bias Voltage</th>
<th>3 Volts</th>
<th>5 Volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>(F = 0.9) GHz</td>
<td>dB</td>
<td>10</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>(F = 1.9) GHz</td>
<td></td>
<td>8</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>(F = 0.9) GHz</td>
<td>dB</td>
<td>1.3</td>
<td>1.4</td>
<td>1.45</td>
</tr>
<tr>
<td></td>
<td>(F = 1.9) GHz</td>
<td></td>
<td>2</td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>(F = 3.0) GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>(F = 0.9) GHz</td>
<td>dB</td>
<td>7.5</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(F = 1.9) GHz</td>
<td></td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(F = 3.0) GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>(F = 0.9) GHz</td>
<td>dB</td>
<td>19.5</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>(F = 1.9) GHz</td>
<td></td>
<td>22</td>
<td></td>
<td>21.5</td>
</tr>
<tr>
<td></td>
<td>(F = 3.0) GHz</td>
<td></td>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>Output P1dB</td>
<td>500 – 3000 MHz</td>
<td>dBm</td>
<td>17.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output IP3</td>
<td>500 – 3000 MHz</td>
<td>dBm</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td></td>
<td>mA</td>
<td>50</td>
<td>77</td>
<td>100</td>
</tr>
</tbody>
</table>

Baseline Application Schematic @ 3V, 5V

Recommended PCB Configuration @ 3V, 5V

Component List @ 3V, 5V

<table>
<thead>
<tr>
<th>Part</th>
<th>Value</th>
<th>Case Style</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1,C2</td>
<td>39 pF</td>
<td>0402</td>
<td>DC Block</td>
</tr>
<tr>
<td>C3</td>
<td>0.1 µF</td>
<td>0402</td>
<td>RF Bypass</td>
</tr>
<tr>
<td>L1</td>
<td>12 nH</td>
<td>0402</td>
<td>RF Choke/Tuning</td>
</tr>
</tbody>
</table>

Handling Procedures

The following precautions should be observed to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.
Typical Performance Curves: $V_{DD} = 3\text{ V}$

Gain

-20
-15
-10
-5
0
0.5 1.0 1.5 2.0 2.5 3.0
Frequency (GHz)

Input Return Loss

-20
-15
-10
-5
0
0.5 1.0 1.5 2.0 2.5 3.0
Frequency (GHz)

Output Return Loss

-30
-25
-20
-15
-10
-5
0
0.5 1.0 1.5 2.0 2.5 3.0
Frequency (GHz)

Noise Figure

0
0.5
1.0
1.5
2.0
2.5
0.5 1.0 1.5 2.0 2.5 3.0
Frequency (GHz)
Miniature Broadband Gain Stage
70 - 3000 MHz

Typical Performance Curves: $V_{DD} = 3\, V$

Output IP3, Input Power @ -12 dBm

- Frequency (GHz)
- Output IP3 (dBm)
- $+25\, ^\circ C$
- $-40\, ^\circ C$
- $+85\, ^\circ C$

P_{1dB}

- Frequency (GHz)
- P_{1dB} (dBm)
- $+25\, ^\circ C$
- $-40\, ^\circ C$
- $+85\, ^\circ C$

Current

- Output Power (dBm)
- Drain Current (mA)
- $+25\, ^\circ C$
- $-40\, ^\circ C$
- $+85\, ^\circ C$
Typical Performance Curves: $V_{DD} = 5 \text{ V}$

6. This device can run from a single 5 volt supply, but for 1M hour MTTF the output power must be no greater than 10 dBm unless using a series resistor on the drain. See Application note 7 on page 7.
Lead-Free SOT-89†

† Reference Application Note M538 for lead-free solder reflow recommendations.

Meets JEDEC moisture sensitivity level 1 requirements.

Plating is 100% matte tin over copper.
5 Volt Application Section for operation above 10 dBm output power

Component List @ 5V

<table>
<thead>
<tr>
<th>Part</th>
<th>Value</th>
<th>Case Style</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>39 pF</td>
<td>0402</td>
<td>Input DC Block</td>
</tr>
<tr>
<td>C2</td>
<td>39 pF</td>
<td>0402</td>
<td>Output DC Block</td>
</tr>
<tr>
<td>C3</td>
<td>0.1 µF</td>
<td>0402</td>
<td>RF Bypass</td>
</tr>
<tr>
<td>L1</td>
<td>12 nH</td>
<td>0805</td>
<td>RF Choke/Tuning</td>
</tr>
<tr>
<td>R1</td>
<td>27 Ω</td>
<td>0402</td>
<td>Voltage Drop</td>
</tr>
</tbody>
</table>

Application Schematic @ 5V

7. The addition of a 27 Ω series resistor on the drain line allows for 5 volt operation above 10 dBm output power, but no greater than 22 dBm of output power.
Miniature Broadband Gain Stage
70 - 3000 MHz

5 Volt Application Section for operation above 10 dBm output power

Typical Performance Curves: $V_{DD} = 5\, V$

- **Gain**
 - Frequency (GHz) vs. $S_{21}\, (dB)$
 - Temperature: $+25\,^\circ C$, $-40\,^\circ C$, $+85\,^\circ C$

- **Input Return Loss**
 - Frequency (GHz) vs. $S_{11}\, (dB)$
 - Temperature: $+25\,^\circ C$, $-40\,^\circ C$, $+85\,^\circ C$

- **Output Return Loss**
 - Frequency (GHz) vs. $S_{22}\, (dB)$
 - Temperature: $+25\,^\circ C$, $-40\,^\circ C$, $+85\,^\circ C$

- **Noise Figure**
 - Frequency (GHz) vs. Noise Figure (dB)
 - Temperature: $+25\,^\circ C$, $-40\,^\circ C$, $+85\,^\circ C$

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:
https://www.macom.com/support
5 Volt Application Section for operation above 10 dBm output power

Typical Performance Curves: $V_{DD} = 5 \text{ V}$

Output IP3, Input Power @ -12 dBm

P1dB

Current

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support