Features

- 6-Bit, 0.5 dB LSB, 31.5 dB range
- Consistent Phase over All Attenuation States
- Integrated CMOS/TTL Compatible Driver
- Compatible with $1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}$ CMOS and 5 V TTL logic input
- Parallel or Serial (P/S) Control
- Low DC Power Consumption
- Attenuation Accuracy:
$+/-(0.2+2 \%$ of attenuation setting) dB
- Lead-Free 3 mm 20-Lead Package
- RoHS* Compliant

Applications

- Multi Market-MMIC
- Metro Long Haul

Description

The MAAD-011061 is a wide band 6-bit, 0.5 dB step MMIC digital attenuator in a lead-free 3 mm , 20-lead surface mount plastic package. The phase is consistent across all attenuation states. This device is ideally suited for use where high accuracy, very low power consumption, and low intermodulation products are required.

This attenuator is controlled with either a SPI compatible serial interface or a 6-bit parallel word. SEROUT is the SERIN delayed by 6 clock cycles which can be used in daisy-chain operation.

Ordering Information ${ }^{1,2}$

Part Number	Package
MAAD-011061-TR0500	500 Piece Reel
MAAD-011061-SMB	Sample Board

1. Reference Application Note M513 for reel size information.
2. All sample boards include 5 loose parts.

Functional Schematic

Pin Configuration ${ }^{3}$

Pin \#	Pin Name	Function
1	D1 or SERIN	0.5 dB Bit or Serial In
2	P/S	Parallel/Serial Selection
3	VSS	Negative Supply
$4,6-10,12$	GND	Ground
5	RF $_{\text {IN }}$	RF Input
11	RFout	RF Output
13	VDD	Positive Supply
14	LLEV	Logic Level
15	SEROUT	Serial Output
16	D6	16 dB Bit Control
17	D5	8 dB Bit Control
18	D4	4 dB Bit Control
19	D3 or LE	2 dB Bit or LE
20	D2 or CLK	1 dB Bit or Clock

3. The exposed pad centered on the package bottom must be connected to RF, DC, and thermal ground. MACOM recommends connecting all GND and NC pins to ground.

Electrical Specifications:

Freq. $=\mathrm{DC}-26.5 \mathrm{GHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Z}_{0}=50 \Omega, \mathrm{~V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V}^{4}, \mathrm{P}_{\mathrm{IN}}=0 \mathrm{dBm}$

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Reference Insertion Loss	$\begin{gathered} \mathrm{DC}-10.0 \mathrm{GHz} \\ 10.0-18.0 \mathrm{GHz} \\ 18.0-26.5 \mathrm{GHz} \end{gathered}$	dB	-	$\begin{aligned} & 2.7 \\ & 3.5 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 4.9 \\ & 6.7 \end{aligned}$
RMS Attenuation Error	DC - 26.5 GHz	dB	-	0.25	-
Attenuation Accuracy	Relative to Insertion Loss	\pm ($0.2+2 \%$ of attenuation setting) dB typ.			
Relative Phase, 0.5 dB Attenuation (Reference to Insertion Loss State)	$\begin{aligned} & 10.0 \mathrm{GHz} \\ & 18.0 \mathrm{GHz} \\ & 26.5 \mathrm{GHz} \end{aligned}$	deg	$\begin{aligned} & -2 \\ & -2 \\ & -2 \\ & \hline \end{aligned}$	$\begin{aligned} & -1 \text { to }+1 \\ & -1 \text { to }+1 \\ & -1 \text { to }+1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$
Relative Phase, 1 dB Attenuation (Reference to Insertion Loss State)	$\begin{aligned} & 10.0 \mathrm{GHz} \\ & 18.0 \mathrm{GHz} \\ & 26.5 \mathrm{GHz} \end{aligned}$	deg	$\begin{aligned} & -2 \\ & -2 \\ & -2 \end{aligned}$	$\begin{aligned} & -1 \text { to }+1 \\ & -1 \text { to }+1 \\ & -1 \text { to }+1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$
Relative Phase, 2 dB Attenuation (Reference to Insertion Loss State)	$\begin{aligned} & 10.0 \mathrm{GHz} \\ & 18.0 \mathrm{GHz} \\ & 26.5 \mathrm{GHz} \end{aligned}$	deg	$\begin{aligned} & \hline-2 \\ & -2 \\ & -2 \end{aligned}$	$\begin{aligned} & -1 \text { to }+1 \\ & -1 \text { to }+1 \\ & -1 \text { to }+1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$
Relative Phase, 4 dB Attenuation (Reference to Insertion Loss State)	$\begin{aligned} & 10.0 \mathrm{GHz} \\ & 18.0 \mathrm{GHz} \\ & 26.5 \mathrm{GHz} \end{aligned}$	deg	$\begin{aligned} & -2 \\ & -2 \\ & -2 \\ & \hline \end{aligned}$	$\begin{aligned} & -1 \text { to }+2 \\ & -1 \text { to }+3 \\ & -1 \text { to }+3 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \\ & 4 \end{aligned}$
Relative Phase, 8 dB Attenuation (Reference to Insertion Loss State)	$\begin{aligned} & 10.0 \mathrm{GHz} \\ & 18.0 \mathrm{GHz} \\ & 26.5 \mathrm{GHz} \end{aligned}$	deg	$\begin{aligned} & \hline-2 \\ & -3 \\ & -5 \\ & \hline \end{aligned}$	$\begin{aligned} & -1 \text { to }+1 \\ & -2 \text { to }+2 \\ & -4 \text { to }+2 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 3 \end{aligned}$
Relative Phase, 16 dB Attenuation (Reference to Insertion Loss State)	$\begin{aligned} & 10.0 \mathrm{GHz} \\ & 18.0 \mathrm{GHz} \\ & 26.5 \mathrm{GHz} \end{aligned}$	deg	$\begin{gathered} \hline-3 \\ -3 \\ -4.5 \\ \hline \end{gathered}$	$\begin{aligned} & -2 \text { to }+2 \\ & -2 \text { to }+2 \\ & -3 \text { to }+1 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 2 \end{aligned}$
Relative Phase, 31.5 dB Attenuation (Reference to Insertion Loss State)	$\begin{aligned} & 10.0 \mathrm{GHz} \\ & 18.0 \mathrm{GHz} \\ & 26.5 \mathrm{GHz} \end{aligned}$	deg	$\begin{gathered} -2 \\ -8 \\ -13 \end{gathered}$	$\begin{aligned} & -1 \text { to }+3 \\ & -5 \text { to }+3 \\ & -8 \text { to }+3 \end{aligned}$	$\begin{aligned} & 5 \\ & 4 \\ & 4 \end{aligned}$
Return Loss	All states	dB	-	-15	-
Input P0.1dB	Reference State @ 10 GHz	dBm	-	27	-
IIP_{3}	2-Tone, +7 dBm/tone, 1 MHz Spacing (Reference State) @ 10 GHz	dBm	-	49	-
$\mathrm{T}_{\text {RISE, }}, \mathrm{T}_{\text {FALL }}$	10\% to 90% RF, 90% to 10% RF	ns	-	20	-
Ton, Toff	50\% triggered control to $90 \%, 10 \%$ of RF	ns	-	50	-

[^0]
Electrical Specifications (continued):

Freq. $=\mathrm{DC}-26.5 \mathrm{GHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Z}_{0}=50 \Omega, \mathrm{~V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V}^{4}, \mathrm{P}_{\mathrm{IN}}=0 \mathrm{dBm}$

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Logic Input High VIH	LLEV (pin 14) Grounded LLEV (pin 14) Open	V	$\begin{gathered} 1.17 \\ 3.5 \end{gathered}$	-	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$
Logic Input Low $\mathrm{V}_{\text {IL }}$	LLEV (pin 14) Grounded LLEV (pin 14) Open	V	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	-	$\begin{aligned} & 0.8 \\ & 1.5 \end{aligned}$
Control Logic Current	LLEV (pin 14) Grounded LLEV (Pin 14) Open	$\mu \mathrm{A}$	-	$\begin{aligned} & 50 \\ & 60 \end{aligned}$	-
Overshoot	All state changes	dB	-	2.8	-
Undershoot	All state changes	dB	-	-10	-
$V_{D D}$	-	V	+4.75	+5.0	+5.25
$I_{\text {DD }}$ Quiescent Current	-	mA	-	1.5	-
$\mathrm{V}_{\text {SS }}$	-	V	-5.25	-5.0	-4.75
Iss Quiescent Current	-	mA	-	1	-
Output High Voltage $\mathrm{V}_{\text {OH }}$ of SEROUT	$\mathrm{I}_{\text {OH }}=-100 \mu \mathrm{~A}$	V	-	1.8	-
Output Low Voltage $\mathrm{V}_{\text {ol }}$ of SEROUT	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	V	0	-	0.2

4. Apply VDD and VSS before RF signal. No sequence requirement for VDD \& VSS.

Absolute Maximum Ratings

Parameter	Absolute Maximum
Input Power $1-26.5 \mathrm{GHz}$	27 dBm
V_{DD} Voltage	+5.5 V
$\mathrm{~V}_{\mathrm{SS}}$ Voltage	-5.5 V
Control Voltage	$-0.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{C}} \leq 5.5 \mathrm{~V}$
SEROUT Current	$200 \mu \mathrm{~A}$
Junction Temperature	$+135^{\circ} \mathrm{C}$
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$

5. Exceeding any one or combination of these limits may cause
permanent damage to this device.

Recommended Operating Conditions

Parameter	Maximum
Input Power	26 dBm
Junction Temperature	$+125^{\circ} \mathrm{C}$
Case Temperature	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Digital Attenuator, 0.5 dB LSB, 6 -Bit, Consistent Phase $31.5 \mathrm{~dB}, \mathrm{DC}-26.5 \mathrm{GHz}$

Application Schematic

Parts List

Part	Value	Case Style
AT1	MAAD-011061	$3 \mathrm{~mm}, 20$ Lead
C1, C4	Capacitor, $10 \mathrm{pF}, 50 \mathrm{~V}$	0402
C2,C5	Capacitor, $1000 \mathrm{pF}, 25 \mathrm{~V}$	0402
C3, C6	Capacitor, $1 \mu \mathrm{~F}, 10 \mathrm{~V}$	0402
R1 - R13	Resistor, 0Ω	0201
J1 - J2	Southwest 1492-03A-5	End Launch 2.4 mm Female J4\quad DC Connector

Digital Attenuator, 0.5 dB LSB, 6-Bit, Consistent Phase $31.5 \mathrm{~dB}, \mathrm{DC}-26.5 \mathrm{GHz}$

MAAD-011061
Rev. V1

Evaluation Board layout

Typical Performance Curves

Output Return Loss - Reference State

Input Return Loss - Major Bits

Input Return Loss - Reference State

Attenuation - Major Bits

Output Return Loss - Major Bits

Digital Attenuator, 0.5 dB LSB, 6-Bit, Consistent Phase $31.5 \mathrm{~dB}, \mathrm{DC}-26.5 \mathrm{GHz}$

Typical Performance Curves

Attenuation Error - Major Bits

RMS Attenuation Error

Ref. State Insertion Loss Compression - 1 GHz

Phase Shift - Major Bits

RMS Phase Shift

Ref. State Insertion Loss Compression - 10 GHz

Digital Attenuator, 0.5 dB LSB, 6 -Bit, Consistent Phase $31.5 \mathrm{~dB}, \mathrm{DC}-26.5 \mathrm{GHz}$

Typical Performance Curves

Ref. State Insertion Loss Compression - 18 GHz

Evaluation Board Thru Line Insertion Loss

Ref. State Insertion Loss Compression - 26.5 GHz

Modes of Operation: Serial and Direct Parallel

Bias Sequencing for both Modes

To avoid potential problems with application of RF signal, VDD and VSS should be supplied first. VDD and VSS can be applied in either order.

Serial Mode

The serial control interface (SERIN, CLK, LE, SEROUT) is compatible with the SPI protocol. SPI mode is activated when P/S is kept high. The 6-bit serial word must be loaded with the MSB first. After shifting in the 6 bit word, a rising edge on LE will set the phase shifter to the desired state. While LE is high the CLK is masked to protect the data while implementing the change. SEROUT is SERIN delayed by 6 clock cycles.

When P/S is low, the serial control interface is disabled. When P/S is set high, pins 19, 20, and 1 have the LE, CLK, and SERIN functions, respectively.

In serial mode operation, the outputs will stay constant while LE is kept low.

Direct Parallel Mode

The parallel mode is enabled when P/S is set low. In the direct parallel mode, the phase shifter is controlled by the parallel control inputs directly. When P/S is set low, Pins 19, 20, and 1 have the D3, D2, and D1 functions.

Mode Truth Table

P/S	LE	Mode
1	X	Serial
0	N/A	Direct Parallel

Truth Table ${ }^{6}$

D6	D5	D4	D3	D2	D1	Attenuation (dB)
0	0	0	0	0	0	Reference IL
0	0	0	0	0	1	0.5
0	0	0	0	1	0	1
0	0	0	1	0	0	2
0	0	1	0	0	0	4
0	1	0	0	0	0	8
1	0	0	0	0	0	16
1	1	1	1	1	1	31.5

6. $" 0 "=V_{\mathrm{IL}}, \quad " 1 "=\mathrm{V}_{\mathrm{IH}}$.

Functionality Modes of Operation: Serial and Direct Parallel Serial Input Interface Timing Diagram

Serial Interface Timing Characteristics

Symbol	Parameter	Typical Performance			Units
		$-40^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$+105^{\circ} \mathrm{C}$	
$\mathrm{t}_{\text {sck }}$	Min. Serial Clock Period	100	100	100	ns
t_{CS}	Min. Control Set-up Time	20	20	20	ns
t_{CH}	Min. Control Hold Time	20	20	20	ns
tLS	Min. LE Set-up Time	10	10	10	ns
$\mathrm{t}_{\text {LEW }}$	Min. LE Pulse Width	10	10	10	ns
$t_{L H}$	Min. Serial Clock Hold Time from LE	10	10	10	ns
$\mathrm{t}_{\text {LES }}$	Min. LE Pulse Spacing	630	630	630	ns

Lead-Free 3 mm, 20-Lead Laminate Package ${ }^{\dagger}$

[^1]MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.
These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

[^0]: 4. Apply VDD and VSS before RF signal. No sequence requirement for VDD \& VSS.
[^1]: ${ }^{\dagger}$ Reference Application Note S2083 for lead-free solder reflow recommendations
 Meets JEDEC moisture sensitivity level 3 requirements in accordance to JEDEC J-STD-020D.
 Plating is 100% NiPdAg over copper.

