MAAD-007086

Digital Attenuator
50 dB, 6-Bit, TTL Driver, DC - 2.0 GHz

Features
- Attenuation: 1 dB Steps to 50 dB
- Low DC Power Consumption
- Integral TTL Driver
- 50 ohm Impedance
- Test Boards are Available
- Tape and Reel Packaging Available
- Lead-Free SOW-24 Package
- 100% Matte Tin Plating over Copper
- Halogen-Free “Green” Mold Compound
- 260°C Reflow Compatible
- RoHS* Compliant Version of AT65-0106

Description
MACOM's MAAD-007086-000100 is a GaAs FET 6-bit digital attenuator with a 1 dB minimum step size and a 50 dB total attenuation range. This device is in a SOW-24, wide body plastic surface mount package. The MAAD-007086-000100 is ideally suited for use where accuracy, fast speed, very low power consumption and low costs are required.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAD-007086-000100</td>
<td>Bulk Packaging</td>
</tr>
<tr>
<td>MAAD-007086-0001TR</td>
<td>1000 piece reel</td>
</tr>
<tr>
<td>MAAD-007086-0001TB</td>
<td>Sample Test Board</td>
</tr>
</tbody>
</table>

Note: Reference Application Note M513 for reel size information.

Schematic with Off-Chip Components

Pin Configuration

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Function</th>
<th>Pin No.</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>13</td>
<td>RF</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>14</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>15</td>
<td>GND</td>
</tr>
<tr>
<td>4</td>
<td>C32</td>
<td>16</td>
<td>GND</td>
</tr>
<tr>
<td>5</td>
<td>C16</td>
<td>17</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>VEE</td>
<td>18</td>
<td>GND</td>
</tr>
<tr>
<td>7</td>
<td>VCC</td>
<td>19</td>
<td>GND</td>
</tr>
<tr>
<td>8</td>
<td>C8</td>
<td>20</td>
<td>GND</td>
</tr>
<tr>
<td>9</td>
<td>C4</td>
<td>21</td>
<td>GND</td>
</tr>
<tr>
<td>10</td>
<td>C2</td>
<td>22</td>
<td>GND</td>
</tr>
<tr>
<td>11</td>
<td>C1</td>
<td>23</td>
<td>GND</td>
</tr>
<tr>
<td>12</td>
<td>GND</td>
<td>24</td>
<td>RF</td>
</tr>
</tbody>
</table>

Digital Attenuator
50 dB, 6-Bit, TTL Driver, DC - 2.0 GHz

Electrical Specifications: \(T_A = 25^\circ C, Z_0 = 50\Omega \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Frequency</th>
<th>Units</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Loss</td>
<td>—</td>
<td>DC - 2.0 GHz</td>
<td>dB</td>
<td>—</td>
<td>4.2</td>
<td>4.7</td>
</tr>
<tr>
<td>Attenuation Accuracy</td>
<td>Individual Bits 1-2-4-8-16-32 dB</td>
<td>DC - 2.0 GHz</td>
<td>dB</td>
<td>—</td>
<td>—</td>
<td>±(3 +3% of atten setting)</td>
</tr>
<tr>
<td></td>
<td>Any Combination of Bits 3 to 15 dB</td>
<td>DC - 2.0 GHz</td>
<td>dB</td>
<td>—</td>
<td>—</td>
<td>±(5 +5% of atten setting)</td>
</tr>
<tr>
<td></td>
<td>Any Combination of Bits 17 to 31 dB</td>
<td>DC - 2.0 GHz</td>
<td>dB</td>
<td>—</td>
<td>—</td>
<td>±(3 +3% of atten setting)</td>
</tr>
<tr>
<td></td>
<td>Any Combination of Bits 32 to 50 dB</td>
<td>DC - 2.0 GHz</td>
<td>dB</td>
<td>—</td>
<td>—</td>
<td>±(5 +7% of atten setting)</td>
</tr>
<tr>
<td>VSWR</td>
<td>Full Range</td>
<td>DC - 2.0 GHz</td>
<td>Ratio</td>
<td>—</td>
<td>1.8:1</td>
<td>2:1</td>
</tr>
<tr>
<td>Switching Speed(^1)</td>
<td>50% Cntl to 90%/10% RF</td>
<td>—</td>
<td>ns</td>
<td>—</td>
<td>75</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>10% to 90% or 90% to 10%</td>
<td>—</td>
<td>ns</td>
<td>—</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>1 dB Compression</td>
<td>Two-tone inputs up to +5 dBm @ 0 dB Attenuation</td>
<td>50 MHz</td>
<td>dbm</td>
<td>—</td>
<td>+21</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5-2.0 GHz</td>
<td>dbm</td>
<td>—</td>
<td>+24</td>
<td>—</td>
</tr>
<tr>
<td>Input IP(_3)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Vcc</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>4.75</td>
<td>5.0</td>
<td>5.25</td>
</tr>
<tr>
<td>Vee</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>-8.0</td>
<td>-5.0</td>
<td>-4.75</td>
</tr>
<tr>
<td>V(_L)</td>
<td>LOW-level input voltage</td>
<td>—</td>
<td>V</td>
<td>0.0</td>
<td>—</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>HIGH-level input voltage</td>
<td>—</td>
<td>V</td>
<td>2.0</td>
<td>—</td>
<td>5.0</td>
</tr>
<tr>
<td>V(_H)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Il (Input Leakage Current)</td>
<td>Vin = V(_CC) or GND</td>
<td>—</td>
<td>uA</td>
<td>-1.0</td>
<td>—</td>
<td>1.0</td>
</tr>
<tr>
<td>Icc (Quiescent Supply Current)</td>
<td>Vcntrl = V(_CC) or GND</td>
<td>—</td>
<td>uA</td>
<td>—</td>
<td>250</td>
<td>400</td>
</tr>
<tr>
<td>(\Delta)Icc (Additional Supply Current Per TTL Input Pin)</td>
<td>V(_CC) = Max, Vcntrl = V(_CC) - 2.1 V</td>
<td>—</td>
<td>mA</td>
<td>—</td>
<td>—</td>
<td>1.0</td>
</tr>
<tr>
<td>IEE</td>
<td>Vee min to max, Vin = V(_L) or V(_H)</td>
<td>—</td>
<td>mA</td>
<td>-1.0</td>
<td>-0.2</td>
<td>—</td>
</tr>
<tr>
<td>Thermal Resistance (\theta_{JA})</td>
<td>PCB mount on FR4 material, copper trace, still air at +25°C</td>
<td>—</td>
<td>°C/W</td>
<td>60-80</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

1. Decoupling capacitors (.01µF) are required on power supply lines.

Absolute Maximum Ratings\(^2,3\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Input Power</td>
<td>+27 dBm</td>
</tr>
<tr>
<td></td>
<td>+34 dBm</td>
</tr>
<tr>
<td>0.05 GHz</td>
<td></td>
</tr>
<tr>
<td>0.5 - 2.0 GHz</td>
<td></td>
</tr>
<tr>
<td>V(_CC)</td>
<td>-0.5V ≤ V(_CC) ≤ +7.0V</td>
</tr>
<tr>
<td>V(_EE)</td>
<td>-8.5V ≤ V(_EE) ≤ +0.5V</td>
</tr>
<tr>
<td>V(_CC) - V(_EE)</td>
<td>-0.5V ≤ V(_CC) - V(_EE) ≤ 14.5V</td>
</tr>
<tr>
<td>Vin(^4)</td>
<td>-0.5V ≤ Vin ≤ V(_CC) + 0.5V</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +125°C</td>
</tr>
</tbody>
</table>

2. Exceeding any one or combination of these limits may cause permanent damage to this device.
3. MACOM does not recommend sustained operation near these survivability limits.
4. Standard CMOS TTL interface, latch-up will occur if logic signal is applied prior to power supply.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.
Truth Table (Digital Attenuator)

<table>
<thead>
<tr>
<th>C32</th>
<th>C16</th>
<th>C8</th>
<th>C4</th>
<th>C2</th>
<th>C1</th>
<th>Attenuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Loss, Reference</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1 dB</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2 dB</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4 dB</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8 dB</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16 dB</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>50 dB</td>
</tr>
</tbody>
</table>

0 = TTL Low; 1 = TTL High

Typical Performance Curves

Insertion Loss vs. Temperature

1 dB Attenuation Variation from -40°C to +85°C

2 dB Attenuation Variation from -40°C to +85°C

4 dB Attenuation Variation from -40°C to +85°C
Typical Performance Curves

8 dB Attenuation Variation from -40°C to +85°C

16 dB Attenuation Variation from -40°C to +85°C

32 dB Attenuation Variation from -40°C to +85°C

Max. Attenuation Variation from -40°C to +85°C

Reference Loss VSWR (S11, S22)

1 dB VSWR (S11, S22)
Digital Attenuator
50 dB, 6-Bit, TTL Driver, DC - 2.0 GHz

Typical Performance Curves

2 dB VSWR (S11, S22)

4 dB VSWR (S11, S22)

8 dB VSWR (S11, S22)

16 dB VSWR (S11, S22)

32 dB VSWR (S11, S22)

50 dB VSWR (S11, S22)
Digital Attenuator

50 dB, 6-Bit, TTL Driver, DC - 2.0 GHz

Lead-Free, SOW-24†

NOTES:
1. REFERENCE JEDEC MS-013-AA FOR ADDITIONAL DIMENSIONAL AND TOLERANCE INFORMATION.
2. ALL DIMENSIONS SHOWN AS IN/MM.
3. REFERENCE M538 APPLICATION NOTE FOR PCB FOOTPRINT INFORMATION.

† Reference Application Note M538 for lead-free solder reflow recommendations.
Digital Attenuator
50 dB, 6-Bit, TTL Driver, DC - 2.0 GHz

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

For further information and support please visit:
https://www.macom.com/support