Features
- Bandwidth: 0.80 GHz to 1.00 GHz
- <1.0 dB Insertion Loss, Typical
- 1.4:1 VSWR, Typical
- 24 dB Attenuation, Typical
- 40 dBm IIP3, Typical (1MHz Offset, @ +0dBm Pinc)
- 0-1.8 Volt Control Voltage.
- User can add an External Resistor for higher voltage requirements.
- RoHs Compliant

Extra Features
- Usable Bandwidth: 0.60 GHz to 2.00 GHz
- 1.9 dB Insertion Loss, Max
- 2:1 VSWR, Max
- 20 dB Attenuation, Max

Description and Applications
M/A-COM’s MA4VAT900-1277T is a HMIC MONLITHIC PIN Diode Variable Attenuator which utilizes an integrated 90 degree 3dB hybrid with a pair of Silicon PIN Diodes to perform the required attenuation function as Voltage (Current) is applied.

This device operates from 0 to 2 Volts at 330 uA typical control current for maximum attenuation. The user can add external biasing resistors to the bias ports for higher voltage requirements as required.

M/A-COM’s MA4VAT900-1277T PIN Diode Variable Attenuator is designed for AGC Circuit Applications requiring:
- Lower Insertion Loss
- Lower distortion through attenuation
- Larger dynamic range for wide spread spectrum applications

Absolute Maximum Ratings @ +25 °C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum Ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
<td>-40 °C to +85 °C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65 °C to +150 °C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>+175 °C</td>
</tr>
<tr>
<td>RF C.W. Incident Power</td>
<td>+33 dBm C.W.</td>
</tr>
<tr>
<td>Reversed Current @ -30 V</td>
<td>50nA</td>
</tr>
<tr>
<td>Control Current</td>
<td>5 mA per Diode</td>
</tr>
</tbody>
</table>

2. All the above values are at +25 °C, unless otherwise noted.
3. Exceeding these limits may cause permanent damage.
Electrical Specifications @ +25 °C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Frequency Band</th>
<th>Unit</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>No DC Bias RF Parameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insertion Loss</td>
<td>0.80 GHz—1.00 GHz</td>
<td>dB</td>
<td>-</td>
<td>1.0</td>
<td>1.2</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td></td>
<td>dB</td>
<td>11</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Output Return Loss</td>
<td></td>
<td>dB</td>
<td>11</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>P1dB</td>
<td></td>
<td>dBm</td>
<td>30</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>IIP3</td>
<td></td>
<td>dBm</td>
<td>37</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Control Voltage</td>
<td></td>
<td>V</td>
<td>-</td>
<td>0 V @ 0uA</td>
<td></td>
</tr>
<tr>
<td>DC Bias RF Parameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Attenuation</td>
<td>0.80 GHz—1.00 GHz</td>
<td>dB</td>
<td>21</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Input Return Loss @ Max Attenuation</td>
<td></td>
<td>dB</td>
<td>17</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Output Return Loss @ Max Attenuation</td>
<td></td>
<td>dB</td>
<td>17</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Input IP3</td>
<td></td>
<td>dBm</td>
<td>15</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Control Voltage @ Max Attenuation</td>
<td></td>
<td>V</td>
<td>-</td>
<td>1.80 V @ 330 uA</td>
<td></td>
</tr>
</tbody>
</table>

Typical RF Performance Over Industry Designated RF Frequency Bands

| Band | Freq | I. Loss | Att. | R. Loss | IIP3 | Phase -Relative-
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(MHz)</td>
<td>(dB)</td>
<td>(dB)</td>
<td>(dB)</td>
<td>(dBm)</td>
<td>(Degree)</td>
</tr>
<tr>
<td>AMPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX</td>
<td>824-849</td>
<td>0.9</td>
<td>24</td>
<td>13</td>
<td>40</td>
<td>-15°</td>
</tr>
<tr>
<td>TX</td>
<td>869-894</td>
<td>0.9</td>
<td>24</td>
<td>13</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

GSM						
RX	880-915	1.1	21	11	40	-15°
TX	925-960	1.1	21	11	40	

4. All are typical values only.
5. Relative phase is the measured Insertion Phase difference between Insertion Loss and 15 dB Attenuation.
 (Please refer to the plots below)
Plots of Typical RF Characteristics @ +25 °C

Typical Insertion Loss & Attenuation

![Graph showing typical insertion loss and attenuation](image)

Typical Return Loss @ All Attenuation Levels

![Graph showing typical return loss at all attenuation levels](image)

Typical IIP3 vs Attenuation

![Graph showing typical IIP3 vs attenuation](image)

Typical Attenuation vs Voltage (@900 MHz)

![Graph showing typical attenuation vs voltage](image)

Typical Relative Phase Shift Per Attenuation (Voltage)

![Graph showing typical relative phase shift per attenuation](image)

For Reference ONLY:
With 0 Ω External Bias Resistor, the following are Approximate Values:
- Insertion Loss = 0 V @ 0 uA
- 5dB Attenuation = 0.76 V @ 49 uA
- 10dB Attenuation = 1.05 V @ 125 uA
- 15dB Attenuation = 1.30 V @ 185 uA
- 20dB Attenuation = 1.50 V @ 240 uA
- Max Attenuation = 1.8 V @ 330 uA
Package PIN Designation, External Components, and Equivalent Circuit

For further information and support please visit:
https://www.macom.com/support
M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.