Features

- No Wirebonds Required
- Rugged Silicon-Glass Construction
- Silicon Nitride Passivation
- Polymer Scratch and Impact Protection
- Low Parasitic Capacitance and Inductance
- Ultra Low Capacitance < 40 fF
- Excellent RC Product < 0.10 ps
- High Switching Cutoff Frequency > 110 GHz
- 110 Nanosecond Minority Carrier Lifetime
- Driven by Standard +5 V TTL PIN Diode Driver

Description

The MA4PBL027 is a silicon beam lead PIN diode fabricated with MACOM’s HMIC™ process. It features one silicon pedestal embedded in a low loss, low dispersion glass which supports the beam-leads. The diode is formed on the top of the pedestal, and air-bridges connect the diode to the beam-leads. The topside is fully encapsulated with silicon nitride and also has an additional polymer layer for scratch and impact protection. These protective coatings prevent damage to the diode junction and air-bridge during handling and assembly. The diodes exhibit low series resistance, low capacitance, and extremely fast switching speed.

Applications

The ultra low capacitance, low RC product and low profile of the MA4PBL027 makes it an ideal choice for use in microwave and millimeter wave switch designs, where low insertion loss and high isolation are required. The low bias levels of 10 mA in the low loss state and 0 V in the isolation state allows the use of a simple 5 V TTL gate driver. These diodes can be used as switching arrays on radar systems, high speed ECM circuits, optical switching networks, instrumentation, and other wideband multi-throw switch assemblies.

Outline Drawing and Dimensions

- A: 0.033 to 0.035 inches (0.838 to 0.889 mm)
- B: 0.0148 to 0.0164 inches (0.376 to 0.416 mm)
- C: 0.004 to 0.006 inches (0.1016 to 0.1524 mm)
- D: 0.0115 to 0.0135 inches (0.2921 to 0.343 mm)
- E: 0.0048 to 0.0065 inches (0.1220 to 0.165 mm)
- F: 0.0082 to 0.010 inches (0.208 to 0.254 mm)

Ordering Information

- Part Number: MA4PBL027
- Package: 100 piece Gel Pack

1. Parts packed circuit side down.

Electrical Specifications at $T_A = +25^\circ$C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Capacitance</td>
<td>-10 V, 1 MHz</td>
<td>pF</td>
<td>—</td>
<td>0.030</td>
<td>0.040</td>
</tr>
<tr>
<td></td>
<td>-40 V, 1 MHz</td>
<td></td>
<td>0.026</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>-10 V, 100 MHz</td>
<td></td>
<td>0.018</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>-40 V, 100 MHz</td>
<td></td>
<td>0.015</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Series Resistance</td>
<td>10 mA / 100 MHz</td>
<td>Ω</td>
<td>—</td>
<td>3.5</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>20 mA, 100 MHz</td>
<td></td>
<td>3.0</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>10 mA, 1 GHz</td>
<td></td>
<td>3.5</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Forward Voltage</td>
<td>20 mA</td>
<td>V</td>
<td>0.7</td>
<td>0.91</td>
<td>0.95</td>
</tr>
<tr>
<td>Leakage Current</td>
<td>-90 V</td>
<td>µA</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Minority Carrier Lifetime</td>
<td>$I_F = +10$ mA, $I_R = 6$ mA</td>
<td>ns</td>
<td>—</td>
<td>150</td>
<td>200</td>
</tr>
</tbody>
</table>

2. Total capacitance (C_T) is equivalent to the sum of Junction Capacitance (C_J) and Parasitic Capacitance (C_{PAR}).
3. Series resistance (R_S) is equivalent to the total diode resistance: $R_S = $ Junction Resistance (R_J) + Ohmic Resistance (R_C).

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Current</td>
<td>100 mA</td>
</tr>
<tr>
<td>Reverse Voltage</td>
<td>90 V</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-55°C to +125°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-55°C to +150°C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>+175°C</td>
</tr>
<tr>
<td>RF CW Incident Power</td>
<td>30 dBm CW</td>
</tr>
<tr>
<td>RF & DC Dissipated Power</td>
<td>150 mW</td>
</tr>
<tr>
<td>Mounting Temperature</td>
<td>235°C for 10 sec.</td>
</tr>
</tbody>
</table>

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity
These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM class 1 devices.

General Handling
A polymer layer provides scratch protection for the diode junction area and anode air bridge. However, the leads of beam lead devices are very fragile and must be handled with extreme care. The leads can easily be distorted or broken by the normal pressures if not careful while handling with tweezers. A vacuum pencil with a #27 tip is the preferred choice for picking and placing.

Attachment
These devices were designed to be inserted onto hard or soft substrates. Recommended methods of attachment include thermo-compression bonding, parallel-gap welding and electrically conductive silver epoxy.
MA4PBL027 SPICE Model

- **NLPINM1**
- **Iss** = 1.0E-14 A
- **Vi** = 0.0 V
- **Un** = 900 cm^2/V-sec
- **Wi** = 14 um
- **Rr** = 100 KΩ
- **Cjmin** = 0.030 pF
- **Tau** = 110 nsec
- **Rs(I)** = \(RC + RJ(I) = 0.05 \) Ω
- **Cj0** = 0.040 pF

- **wBv** = 90 V
- **wPmax** = 150 mW
- **Ffe** = 1.0
- **M** = 0.5
- **Fc** = 0.5
- **lmax** = 1.1E+5 A/m^2
- **Kf** = 0.0
- **Af** = 1.0
- **Vj** = 0.7 V

Input

- \(Ls = 0.15 \) nH

Output

- \(C \text{ parasitic} = 8 \) fF
M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support