MA4P7455-1225

Quad PIN Diode π Attenuator
10 - 4000 MHz

Features
- 4 PIN diodes in a SOT-25 Plastic Package
- Externally Selectable Bias and RF Matching Network
- 10 – 4,000 MHz Useable Frequency Band
- +43 dBm IP3 @ 1000 MHz (50 Ω)
- 1.0 dB Loss @ 1000 MHz (50 Ω)
- 30 dB Attenuation @ 1000 MHz (50 Ω)
- Lead-Free SOT-25 Package
- 100% Matte Tin Plating over Copper
- Halogen-Free "Green" Mold Compound
- 260°C Reflow Compatible
- RoHS* Compliant Version of MA4P274-1225

Description
M/A-COM’s MA4P7455-1225 is a wideband, lower insertion loss, high IP3, Quad PIN diode π attenuator in a low-cost, lead free surface mount SOT-25 package. Four PIN diodes in one package reduce design parasitics and improve circuit density.

These PIN diode attenuators perform well where RF signal amplitude control is required in 50 Ω handset circuits and 75 Ω broadband CATV systems. Exceptional insertion loss, attenuation range, and IP3 at <10 mA bias make these devices suitable for better power level control in RF amplifiers.

Ordering Information1

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA4P7455-1225T</td>
<td>Tape and Reel</td>
</tr>
<tr>
<td>MADP-007455-001SMB</td>
<td>Sample Board</td>
</tr>
</tbody>
</table>

Functional Schematic

Pin Configuration

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Function</th>
<th>Pin No.</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RF IN</td>
<td>4</td>
<td>Shunt 1 Bias</td>
</tr>
<tr>
<td>2</td>
<td>Series Bias</td>
<td>5</td>
<td>Shunt 2 Bias</td>
</tr>
<tr>
<td>3</td>
<td>RF OUT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings2,3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
<td>-65 °C to +125 °C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65 °C to +150 °C</td>
</tr>
<tr>
<td>No Dissipated Power</td>
<td></td>
</tr>
<tr>
<td>DC Voltage at Temperature Extremes</td>
<td>- 100 V</td>
</tr>
<tr>
<td>DC Current</td>
<td>75 mA</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.

2. Exceeding any one or combination of these limits may cause permanent damage to this device.
3. M/A-COM does not recommend sustained operation near these survivability limits.

Advanced: Data Sheets contain information regarding a product M/A-COM is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

Preliminary: Data Sheets contain information regarding a product M/A-COM has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

North America Tel: 800.366.2266 / Fax: 978.366.2266
Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macom.com for additional data sheets and product information.

M/A-COM Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.
Typical 50 Ω Performance\(^4\) @ 25°C using Wideband RF Circuit Design

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Loss</td>
<td>+3 mA Series Diode Bias / 0.75 V Shunt 1 and 2 Bias 1000 MHz</td>
<td>dB</td>
<td>—</td>
<td>-2.0</td>
<td>—</td>
</tr>
<tr>
<td>Insertion Loss</td>
<td>+6.5 mA Series Diode Bias / 0.75 V Shunt 1 and 2 Bias 1000 MHz</td>
<td>dB</td>
<td>—</td>
<td>-1.0</td>
<td>—</td>
</tr>
<tr>
<td>Return Loss</td>
<td>+6.5 mA Series Diode Bias / 0.75 V Shunt 1 and 2 Bias 1000 MHz</td>
<td>dB</td>
<td>—</td>
<td>-10</td>
<td>—</td>
</tr>
<tr>
<td>Attenuation</td>
<td>0 mA - Series Diode Bias / 0.75 V - Shunt 1 and 2 Bias 1000 MHz</td>
<td>dB</td>
<td>—</td>
<td>-29</td>
<td>—</td>
</tr>
<tr>
<td>Input IP3</td>
<td>0 mA Series Diode Bias / 0.75 V Shunt 1 and 2 Bias 1000 MHz</td>
<td>dBm</td>
<td>—</td>
<td>43</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>+6.5 mA Series Diode Bias / 0.75 V Shunt 1 and 2 Bias 1000 MHz</td>
<td>dBm</td>
<td>—</td>
<td>43</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>F1 = 1000 MHz, F2 = 1100 MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input IP3</td>
<td>0 mA Series Diode Bias / 0.75 V Shunt 1 and 2 Bias 1000 MHz</td>
<td>dBm</td>
<td>—</td>
<td>43</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>+6.5 mA Series Diode Bias / 0.75 V Shunt 1 and 2 Bias 1000 MHz</td>
<td>dBm</td>
<td>—</td>
<td>33</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>F1 = 100 MHz, F2 = 110 MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Settling Time</td>
<td>Within 1 dB of Final Attenuation Value 1000 MHz</td>
<td>µS</td>
<td>—</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>RF C.W. Incident</td>
<td>0 - 20 V Series Diode Bias / 0.75 V Shunt 1 and 2 Bias 1000 MHz</td>
<td>dBm</td>
<td>—</td>
<td>+20</td>
<td>—</td>
</tr>
</tbody>
</table>

\(^4\) Values shown include through loss calibrated out of RF test circuit.

Typical 75 Ω Performance\(^5\) @ +25°C using Wideband RF Circuit Design

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Loss</td>
<td>+2 mA Series Diode Bias / 1.0 V Shunt 1 and 2 Bias 1000 MHz</td>
<td>dB</td>
<td>—</td>
<td>-1.1</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>+4.5 mA Series Diode Bias / 1.0 V Shunt 1 and 2 Bias 1000 MHz</td>
<td>dB</td>
<td>—</td>
<td>-0.6</td>
<td>—</td>
</tr>
<tr>
<td>Attenuation</td>
<td>0 mA / Series Diode and 1.0 V Shunt 1 and 2 Bias 1000 MHz</td>
<td>dB</td>
<td>—</td>
<td>-27</td>
<td>—</td>
</tr>
<tr>
<td>Return Loss</td>
<td>+4.5 mA / Series Diode and 1.0 V Shunt 1 and 2 Bias 1000 MHz</td>
<td>dB</td>
<td>—</td>
<td>-10</td>
<td>—</td>
</tr>
</tbody>
</table>

\(^5\) Values shown include through loss calibrated out of RF test circuit.
Quad PIN Diode π Attenuator
10 - 4000 MHz

Recommended PCB Layout

Parts List

<table>
<thead>
<tr>
<th>Part</th>
<th>Value</th>
<th>Case Style</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C2, C3, C4, C5</td>
<td>100 pF</td>
<td>0603</td>
<td>Murata</td>
</tr>
<tr>
<td>R1, R2, R3, R4, R5</td>
<td>1000 Ω</td>
<td>0402</td>
<td>Panasonic</td>
</tr>
</tbody>
</table>

MA4P7455-1225T Spice Model

Pin Diode Model
NLPINM2
Is = 1E-14 A
Vi = 0 V
Un = 900 cm²/V-sec
Wi = 60 um
Rr = 1.25 Ohm
Cmin = 0.20 pF
Tau = 1.0 usec
Rs = 0.1 Ohm
Cjo = 0.27 pF
Vj = 0.7 V
M = 0.5
Fc = 0.5
Imax = 2.5E+6 A/m²
Kf = 0
Af = 1

Series and Shunt Diode Bias Currents as a Function of Vseries and Vshunt Voltage
(Values shown are PER DIODE)

<table>
<thead>
<tr>
<th>Vshunt Bias (V)</th>
<th>Vseries Bias (V)</th>
<th>Iseries Diode (mA)</th>
<th>Ishunt Diode (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>0</td>
<td>0.000</td>
<td>0.192</td>
</tr>
<tr>
<td>0.75</td>
<td>1</td>
<td>0.106</td>
<td>0.120</td>
</tr>
<tr>
<td>0.75</td>
<td>2</td>
<td>0.443</td>
<td>0.048</td>
</tr>
<tr>
<td>0.75</td>
<td>3</td>
<td>0/773</td>
<td>0</td>
</tr>
<tr>
<td>0.75</td>
<td>4</td>
<td>1.099</td>
<td>0</td>
</tr>
<tr>
<td>0.75</td>
<td>5</td>
<td>1.426</td>
<td>0</td>
</tr>
<tr>
<td>0.75</td>
<td>6</td>
<td>1.750</td>
<td>0</td>
</tr>
<tr>
<td>0.75</td>
<td>7</td>
<td>2.092</td>
<td>0</td>
</tr>
<tr>
<td>0.75</td>
<td>8</td>
<td>2.424</td>
<td>0</td>
</tr>
<tr>
<td>0.75</td>
<td>9</td>
<td>2.756</td>
<td>0</td>
</tr>
<tr>
<td>0.75</td>
<td>10</td>
<td>3.088</td>
<td>0</td>
</tr>
<tr>
<td>0.75</td>
<td>11</td>
<td>3.421</td>
<td>0</td>
</tr>
<tr>
<td>0.75</td>
<td>12</td>
<td>3.754</td>
<td>0</td>
</tr>
<tr>
<td>0.75</td>
<td>13</td>
<td>4.087</td>
<td>0</td>
</tr>
<tr>
<td>0.75</td>
<td>14</td>
<td>4.410</td>
<td>0</td>
</tr>
<tr>
<td>0.75</td>
<td>15</td>
<td>4.743</td>
<td>0</td>
</tr>
<tr>
<td>0.75</td>
<td>16</td>
<td>5.081</td>
<td>0</td>
</tr>
<tr>
<td>0.75</td>
<td>17</td>
<td>5.406</td>
<td>0</td>
</tr>
<tr>
<td>0.75</td>
<td>18</td>
<td>5.750</td>
<td>0</td>
</tr>
<tr>
<td>0.75</td>
<td>19</td>
<td>6.079</td>
<td>0</td>
</tr>
<tr>
<td>0.75</td>
<td>20</td>
<td>6.413</td>
<td>0</td>
</tr>
</tbody>
</table>
Schematic 10 - 1000 MHz, 50 Ω, RF Circuit

9. Keeping PIN 4 & PIN 5 as Separate Bias Points (Same V) reduces RF leakage (increases attenuation) through an otherwise connected Common Anode Bias Note.

Schematic 1 - 4 GHz, 50 Ω, RF Circuit

10. Keeping PIN 4 & PIN 5 as Separate Bias Points (Same V) reduces RF leakage through an otherwise connected Common Anode Bias Node.
MA4P7455-1225

Quad PIN Diode π Attenuator
10 - 4000 MHz

M/A-COM Products
Rev. V2

Lumped Element Model for MA4P7455-1225 PIN Diode π Attenuator in SOT-25

Lead Free SOT-25 †

† Reference Application Note M538 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements.
MA4P7455-1225

Quad PIN Diode π Attenuator
10 - 4000 MHz

Typical Performance Curves @ +25°C, 50 - 1000 MHz, Shunt Bias = 0.75 Volts

Insertion Loss vs. Frequency

-2.5 to -0.5 dB

Frequency (MHz) 0 200 400 600 800 1000

Attenuation vs. Control Voltage

-70 to 0 dB

Control Voltage (V) 0 5 10 15 20

Input Return Loss vs. Control Voltage

-40 to 0 dB

Control Voltage (V) 0 5 10 15 20

Output Return Loss vs. Control Voltage

-40 to 0 dB

Control Voltage (V) 0 5 10 15 20

IP3 vs. Control Voltage

-2.5 to 70 dBm

Control Voltage (V) 0 5 10 15 20

ADVANCED: Data Sheets contain information regarding a product M/A-COM is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

M/A-COM Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

North America Tel: 800.366.2266 / Fax: 978.366.2266
Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

M/A-COM Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.
Quad PIN Diode π Attenuator
10 - 4000 MHz

Typical Performance Curves @ +25°C, 1000 - 5000 MHz, Shunt Bias = 0.75 Volts

Insertion Loss vs. Frequency

Attenuation vs. Control Voltage

Input Return Loss vs. Control Voltage

Output Return Loss vs. Control Voltage

IP3 vs. Control Voltage (10 MHz Spacing)

P1dB vs. Control Voltage