Features
- Broad Bandwidth Specified 18 to 40 GHz
- Usable 10 GHz to 55 GHz
- Extremely Low Insertion Loss
- High RF-DC Isolation
- Rugged, Fully Monolithic Glass Encapsulation
- J1 & J2 Matched to 50 Ω
- RoHS* Compliant

Applications
- Aerospace & Defense
- ISM

Description
The MA4BN1840-1 is a fully monolithic broadband bias network utilizing MACOM’s HMIC™ (Heterolithic Microwave Integrated Circuit) process, US Patent 5,268,310. This process allows the formation of silicon vias by imbedding them in low loss, low dispersion glass along with high Q spiral inductors and MIM capacitors. The close proximity between elements and the combination of silicon and glass gives this HMIC device low loss and high performance with exceptional repeatability through millimeter frequencies.

Large bond pads facilitate the use of low inductance ribbon bonds, while the gold backside metallization provides the RF and DC ground. This allows for manual or automatic die attach via electrically conductive silver epoxy or RoHS compliant solders.

The MA4BN1840-1 bias network is ideally suited for the DC biasing of PIN diode control circuits. It functions as an RF-DC de-coupling network as well as the DC return. The device can also be used as a bi-directional re-active coupler for Schottky detector circuits. DC currents up to 150 mA and DC voltages up to 50 V may be used.

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.
Monolithic HMIC™
Integrated Bias Network

MACOM

MA4BN1840-1
Rev. V6

Electrical Specifications: Freq. = 18 - 40 GHz, $T_A = +25^\circ$C on Wafer Measurements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Loss</td>
<td>—</td>
<td>0.15</td>
<td>0.2</td>
<td>dB</td>
</tr>
<tr>
<td>RF - DC Isolation</td>
<td>30</td>
<td>35</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>15</td>
<td>17</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>15</td>
<td>17</td>
<td>—</td>
<td>dB</td>
</tr>
</tbody>
</table>

Maximum Operating Conditions @ +25°C (Unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF CW Incident Power</td>
<td>10 Watts</td>
</tr>
<tr>
<td>DC Bias Current</td>
<td>+/- 150 mA</td>
</tr>
<tr>
<td>DC Bias Voltage</td>
<td>+/- 50 V</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-65°C to +125°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
<tr>
<td>Die Attach Temperature</td>
<td>320°C for 20 sec</td>
</tr>
</tbody>
</table>

DIE Dimensions

<table>
<thead>
<tr>
<th>Dim.</th>
<th>Millimeters</th>
<th>Mils</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.420</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>1.020</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>-</td>
<td>0.813</td>
</tr>
<tr>
<td>D</td>
<td>-</td>
<td>0.408</td>
</tr>
<tr>
<td>E</td>
<td>-</td>
<td>0.816</td>
</tr>
<tr>
<td>F</td>
<td>0.497</td>
<td>-</td>
</tr>
<tr>
<td>RF Bond Pads J1 & J2</td>
<td>-</td>
<td>0.130</td>
</tr>
<tr>
<td>DC Bond Pad</td>
<td>-</td>
<td>0.152</td>
</tr>
<tr>
<td>Chip Thickness</td>
<td>-</td>
<td>0.151</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.122</td>
</tr>
</tbody>
</table>

For further information and support please visit: https://www.macom.com/support
Typical Performance Curves @ $T_A = +25°C$

Insertion Loss ($J_1 - J_2$)

![Insertion Loss Graph]

Input Return Loss ($J_1 - J_2$)

![Input Return Loss Graph]

Output Return Loss ($J_2 - J_1$)

![Output Return Loss Graph]
Assembly Considerations

Cleanliness
The chip should be handled in a clean environment.

Electro-Static Sensitivity
The MA4BN1840-1 bias network is ESD, Class 1B sensitive. The proper ESD handling procedures should be used.

Wire Bonding
Thermosonic wedge wire bonding using 0.003” x 0.00025” ribbon or ball bonding with 0.001” diameter gold wire is recommended. A stage temperature of 150°C and a force of 18 to 22 grams should be used. Ultrasonic energy should be adjusted to the minimum required. RF bonds should be as short as possible for best performance.

Mounting
These chips have Ti-Pt-Au topside and backside metal. They can be die mounted with either a gold-tin eutectic solder preform, RoHS compliant solders or electrically conductive silver epoxy. Mounting surface must be clean of organic contaminants and flat for best adhesion results.

Eutectic Die Attachment
An 80/20 gold-tin eutectic solder preform is recommended with a work surface temperature of 255°C and a tool tip temperature of 265°C. When hot gas is applied, the tool tip temperature should be 290°C. The chip should not be exposed to temperatures >320°C for more than 20 seconds. No more than 3 seconds should be required for attachment.

Epoxy Die Attachment
Assembly should be preheated to 125 - 150°C. A minimum amount of electrically conductive epoxy should be used, approximately 1 to 2 mils thickness for best electrical and thermal conductivity. A thin epoxy fillet should be visible around the perimeter of the chip after placement. Cure epoxy per manufacturer’s time-temperature schedule. Typically 150°C for 1 hour.

RoHS Soldering
See application note M538 on the MACOM website for the recommended heating profile.
Operation of the MA4BN1840-1

Broadband operation of the MA4BN1840-1 bias network is accomplished by applying DC bias to the DC port on the die. The outputs, J1 and/or J2 provide the DC bias to the corresponding, connected, microwave device. An external blocking capacitor is required if the current is to be directed to only one RF output port such as in a bias T configuration. This device can also be used as a ground return when the DC Bias Port is attached to the RF and DC ground. The small DC resistance (<1 Ω) of the DC Bias Port allows up to +/- 150 mA @ +/- 50 V to be delivered while still maintaining >35 dB RF to DC isolation.
Biasing Applications using the MA4BN1840-1

Bias Circuit for Shunt Diode Switch

IN | External DC Block | J1 | PIN Diodes | J2 | External DC Block | OUT

DC Bias
Monolithic HMIC™
Integrated Bias Network

Biasing Applications using the MA4BN1840-1

Bias Circuit for Series Diode Switch

[Diagram showing bias circuit with IN and OUT ports, PIN diodes, and external DC blocks]
Biasing Applications using the MA4BN1840-1

Bias Circuit for Series - Shunt Diode Switch

IN
External DC Block

J1
DC Bias

J2

PIN Diodes

OUT
External DC Block

J1
DC Return

J2
DC Bias
MACOM Technology Solutions Inc. (“MACOM”). All rights reserved.

These materials are provided in connection with MACOM’s products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED “AS IS” WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.