MA4BN1840-1

Monolithic HMIC™
Integrated Bias Network

Features
- Broad Bandwidth Specified 18 to 40 GHz
- Usable 10 GHz to 50 GHz
- Extremely Low Insertion Loss
- High RF-DC Isolation
- Rugged, Fully Monolithic Glass Encapsulation
- J1 & J2 Matched to 50 Ω
- RoHS* Compliant

Description
The MA4BN1840-1 is a fully monolithic broadband bias network utilizing MACOM’s HMIC™ (Heterolithic Microwave Integrated Circuit) process, US Patent 5,268,310. This process allows the formation of silicon vias by imbedding them in low loss, low dispersion glass along with high Q spiral inductors and MIM capacitors. The close proximity between elements and the combination of silicon and glass gives this HMIC device low loss and high performance with exceptional repeatability through millimeter frequencies.

Large bond pads facilitate the use of low inductance ribbon bonds, while the gold backside metallization provides the RF and DC ground. This allows for manual or automatic die attach via electrically conductive silver epoxy or RoHS compliant solders.

The MA4BN1840-1 bias network is ideally suited for the DC biasing of PIN diode control circuits. It functions as an RF-DC de-coupling network as well as the DC return. The device can also be used as a bi-directional re-active coupler for Schottky detector circuits. DC currents up to 150 mA and DC voltages up to 50 V may be used.

Monolithic HMIC™ Integrated Bias Network

Electrical Specifications: Freq. = 18 - 40 GHz, $T_A = +25°C$ on Wafer Measurements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Loss</td>
<td>—</td>
<td>0.15</td>
<td>0.2</td>
<td>dB</td>
</tr>
<tr>
<td>RF - DC Isolation</td>
<td>30</td>
<td>35</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>15</td>
<td>17</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>15</td>
<td>17</td>
<td>—</td>
<td>dB</td>
</tr>
</tbody>
</table>

Maximum Operating Conditions @ +25°C (Unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
<td>-65°C to +125°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
<tr>
<td>Die Attach Temperature</td>
<td>320°C for 20 sec</td>
</tr>
<tr>
<td>RF CW Incident Power</td>
<td>10 Watts</td>
</tr>
<tr>
<td>DC Bias Current</td>
<td>+/- 150 mA</td>
</tr>
<tr>
<td>DC Bias Voltage</td>
<td>+/- 50 V</td>
</tr>
</tbody>
</table>

DIE Dimensions
Typical RF Performance Curves @ $T_A = +25^\circ$C

J1-J2 INSERTION LOSS

J2-J1 OUTPUT RETURN LOSS

J1-J2 INPUT RETURN LOSS

RF-DC ISOLATION
Assembly Considerations

Cleanliness
These chips should be handled in a clean environment.

Electro-Static Sensitivity
The MA4BN1840-1 bias network is ESD, Class 1B sensitive. The proper ESD handling procedures should be used.

Wire Bonding
Thermosonic wedge wire bonding using 0.003” x 0.00025” ribbon or ball bonding with 0.001” diameter gold wire is recommended. A stage temperature of 150°C and a force of 18 to 22 grams should be used. Ultrasonic energy should be adjusted to the minimum required. RF bonds should be as short as possible for best performance.

Mounting
These chips have Ti-Pt-Au topside and backside metal. They can be die mounted with either a gold-tin eutectic solder preform, RoHS compliant solders or electrically conductive silver epoxy. Mounting surface must be clean of organic contaminants and flat for best adhesion results.

Eutectic Die Attachment
An 80/20 gold-tin eutectic solder preform is recommended with a work surface temperature of 255°C and a tool tip temperature of 265°C. When hot gas is applied, the tool tip temperature should be 290°C. The chip should not be exposed to temperatures greater than 320°C for more than 20 seconds. No more than three seconds should be required for attachment.

Electrically Conductive Epoxy Die Attachment
Assembly should be preheated to 125-150°C. A minimum amount of epoxy should be used, approximately 1 to 2 mils thickness for best electrical and thermal conductivity. A thin epoxy fillet should be visible around the perimeter of the chip after placement. Cure epoxy per manufacturer’s time-temperature schedule. Typically 150°C for 1 hour.

RoHS Soldering
See application note M538 page 7 on www.macomtech.com for the recommended heating profile.
Operation of the MA4BN1840-1

Broadband operation of the MA4BN1840-1 bias network is accomplished by applying DC bias to the DC port on the die. The outputs, J1 and/or J2 provide the DC bias to the corresponding, connected, microwave device. An external blocking capacitor is required if the current is to be directed to only one RF output port such as in a bias T configuration. This device can also be used as a ground return when the DC Bias Port is attached to the RF and DC ground. The small DC resistance (< 1 Ω) of the DC Bias Port allows up to +/- 150 mA @ +/- 50 V to be delivered while still maintaining >35 dB RF to DC isolation.
Biasing Applications using the MA4BN1840-1

Bias Circuit for Shunt Diode Switch

IN

External DC Block

DC Bias

J1

J2

External DC Block

OUT

PIN Diodes
Biasing Applications using the MA4BN1840-1

Bias Circuit for Series Diode Switch

IN

J1

DC Bias

External
DC Block

J2

DC Return

DC Bias

External
DC Block

PIN Diodes

OUT

J1

J2
Biasing Applications using the MA4BN1840-1

Bias Circuit for Series - Shunt Diode Switch
M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.