GaAs Constant Gamma Flip-Chip Varactor Diode

Features
- Constant Gamma for Linear Tuning
- Low Parasitic Capacitance
- High Q
- Silicon Nitride Passivation
- Polyimide Scratch Protection
- Surface Mount Configuration

Description
M/A-COM’s MA46H120 series is a gallium arsenide flip chip hyperabrupt varactor diode. These devices are fabricated on OMCVD epitaxial wafers using a process designed for high device uniformity and extremely low parasitics. The MA46H120 diodes are fully passivated with silicon nitride and have an additional layer of polyimide for scratch protection. The protective coatings prevent damage to the junction during automated or manual handling. The flip chip configuration is suitable for pick and place insertion.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA46H120-W</td>
<td>Whole Wafer</td>
</tr>
<tr>
<td>MA46H120</td>
<td>Gel Pack</td>
</tr>
<tr>
<td>MAVR-000120-12030W</td>
<td>Waffle Pack</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +125°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>100 mW</td>
</tr>
<tr>
<td>Mounting Temperature</td>
<td>+235°C for 10 seconds</td>
</tr>
</tbody>
</table>

1. Exceeding any one or combination of these limits may cause permanent damage to this device.
2. M/A-COM does not recommend sustained operation near these survivability limits.

Chip Layout

Schematic

Electrical Specifications @ $T_A = +25 ^\circ C$

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakdown Voltage @ $I_R = 10 \mu A$, $V_R = 20 V$ Minimum</td>
<td></td>
</tr>
<tr>
<td>Reverse Leakage Current @ $V_R = 14 V$, $I_R = 100 nA$ Maximum</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>C_T (pF)</th>
<th>C_T (pF)</th>
<th>C_T (pF)</th>
<th>Q Factor</th>
<th>Γ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>f=1MHz, $V_R=0 V$</td>
<td>f=1MHz, $V_R=4 V$</td>
<td>f=1MHz, $V_R=10 V$</td>
<td>f=50MHz, $V_R=4 V$</td>
<td>$V_R=2-12 V$</td>
</tr>
<tr>
<td>MA46H120</td>
<td>Min Typ Max</td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>0.30</td>
<td>0.40</td>
<td>0.14</td>
<td>0.20</td>
</tr>
</tbody>
</table>

* Specifications are subject to change without prior notification

For further information and support please visit:
https://www.macom.com/support
TYPICAL PERFORMANCE CURVES @ +25 °C

CAPACITANCE VS VOLTAGE
GAMMA = 1.00 +/- 10% FROM 2 to 12 Volts

CHIP OUTLINE DRAWING

(ODS-1203)

DIM	INCHES	MM
A | .025 | .64
B | .012 | .32
C | .006 | .15
D | .007 | .17
E | .004 | .10
F | .018 | .45

* Specifications are subject to change without prior notification
Mounting Techniques
These chips were designed to be inserted onto hard or soft substrates with the junction side down. They can be mounted with conductive epoxy or with a low temperature solder preform. The die can also be assembled with the junction side up, and wire or ribbon bonds made to the pads.

Solder Die Attachment
Solder which does not scavenge gold, such as Indalloy #2, is recommended. Sn-Pb based solders are not recommended due to solder embrittlement. Do not expose die to a temperature greater than 235°C, or greater than 200°C for longer than 10 seconds. No more than three seconds of scrub should be required for attachment.

Epoxy Die Attachment
Assembly can be preheated to 125 - 150°C. Use a minimum amount of epoxy. Cure epoxy per manufacturer’s schedule. For extended cure times, temperatures must be kept below 200°C.

Handling Procedures
The following precautions should be observed to avoid damaging GaAs Flip-Chips:

Cleanliness
These chips should be handled in a clean environment. Do not attempt to clean die after installation.

Static Sensitivity
Varactor diodes are ESD sensitive and can be damaged by static electricity. Proper ESD techniques should be followed to when handling these devices.

General Handling
The protective polymer coating on the active areas of these dice provides scratch protection, particularly for the metal airbridge which contacts the anode. Dice can be handled with tweezers or vacuum pickups and are suitable for use with automatic pick-and-place equipment.

* Specifications are subject to change without prior notification