GaAs Hyperabrupt Varactor Diode
Gamma = 1.0, 1.25, & 1.5

Features
- Constant Gamma = 1.0, 1.25 & 1.5
- High Q (up to 4000 at -4 Volts)
- More Linear Frequency Tuning
- High and Nearly Constant Modulation Sensitivity
- Lead-Free (RoHS Compliant) equivalents available with 260°C reflow compatibility

Applications
- ISM

Description
The MA46450, MA46470 and MA46410 series of tuning varactors are hyperabrupt junction Gallium Arsenide diodes featuring constant gamma 1.0 (MA46450 series), 1.25 (MA46470 series) & 1.5 (MA46410 series). These diodes offer high Q (up to 4000) permitting excellent tuning performance from VHF through Ka band. Each part in this series exhibits the large change in capacitance versus bias voltage characteristic of hyperabrupt junctions. The standard capacitance tolerance is ±10%, with tighter tolerances available. Capacitance matching at one or more bias voltages is also available. All diode types are available in a wide selection of ceramic packages and in chip form. The constant gamma value of 1.0, 1.25 & 1.5 available with these diodes enables the circuit designer to produce significant improvements in circuit performance. Constant gamma tuning varactors permit more linear VCO frequency tuning than do conventional hyperabrupt tuning varactors. These varactors are particularly well suited for use in voltage tuned filters, analog phase shifters, and modulator circuits.

Packaged Tuning Varactor Equivalent Circuit

Case Styles
(Dimensions are available upon request)

Typical Coaxial Packages

Typical Coplanar Packages
GaAs Hyperabrupt Varactor Diode
Gamma = 1.0, 1.25, & 1.5

Electrical Specifications\(^1\): \(T_A = +25^\circ C\)

Gamma = 1.0\(^2\) MA46450 Series
Gamma = 0.9 - 1.1, \(V_C = 2 - 20\) Volts
Junction Capacitance Ratio \((C_{2}/C_{20})\) = 5.0 - 8.0
Breakdown Voltage @ \(I_R = 10\, \mu A\), \(V_b = 22\, \text{V}\) min.
Reverse Leakage Current @ \(V_R = 18\, \text{V}\), \(I_R = 100\, \text{nA}\) max.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Total Capacitance +/-10(^%) (\text{pF})</th>
<th>Total Capacitance Ratio (\frac{V_R = 2 , \text{V}}{V_R = 20 , \text{V}})</th>
<th>Q Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA46450</td>
<td>0.5</td>
<td>2.0 - 3.8</td>
<td>4000</td>
</tr>
<tr>
<td>MA46451</td>
<td>0.7</td>
<td>2.9 - 4.4</td>
<td>4000</td>
</tr>
<tr>
<td>MA46452</td>
<td>1.0</td>
<td>3.6 - 5.2</td>
<td>3000</td>
</tr>
<tr>
<td>MA46457</td>
<td>2.2</td>
<td>4.1 - 6.1</td>
<td>3000</td>
</tr>
<tr>
<td>MA46461</td>
<td>4.7</td>
<td>4.8 - 7.2</td>
<td>1500</td>
</tr>
</tbody>
</table>

Gamma = 1.25\(^2\) MA46470 thru MA46485 Series
Gamma = 1.13 - 1.38, \(V_C = 2 - 20\) Volts
Junction Capacitance Ratio \((C_{2}/C_{20})\) = 8.15 - 12.99
Breakdown Voltage @ \(I_R = 10\, \mu A\), \(V_b = 22\, \text{V}\) min.
Reverse Leakage Current @ \(V_R = 18\, \text{V}\), \(I_R = 100\, \text{nA}\) max.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Total Capacitance +/-10(^%) (\text{pF})</th>
<th>Total Capacitance Ratio (\frac{V_R = 2 , \text{V}}{V_R = 20 , \text{V}})</th>
<th>Q Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA46470(^8)</td>
<td>0.5</td>
<td>2.2 - 4.1</td>
<td>4000</td>
</tr>
<tr>
<td>MA46471</td>
<td>0.7</td>
<td>3.6 - 5.6</td>
<td>4000</td>
</tr>
<tr>
<td>MA46472</td>
<td>1.0</td>
<td>4.8 - 7.4</td>
<td>3000</td>
</tr>
<tr>
<td>MA46473</td>
<td>1.2</td>
<td>4.8 - 7.4</td>
<td>3000</td>
</tr>
<tr>
<td>MA46474</td>
<td>1.5</td>
<td>5.0 - 7.4</td>
<td>3000</td>
</tr>
<tr>
<td>MA46475</td>
<td>1.8</td>
<td>6.6 - 8.7</td>
<td>3000</td>
</tr>
<tr>
<td>MA46477</td>
<td>2.2</td>
<td>6.6 - 8.7</td>
<td>3000</td>
</tr>
<tr>
<td>MA46479(^8)</td>
<td>3.3</td>
<td>6.4 - 10.0</td>
<td>2000</td>
</tr>
<tr>
<td>MA46480</td>
<td>3.7</td>
<td>6.8 - 11.0</td>
<td>2000</td>
</tr>
<tr>
<td>MA46481</td>
<td>4.7</td>
<td>6.9 - 11.1</td>
<td>1500</td>
</tr>
<tr>
<td>MA46483</td>
<td>6.8</td>
<td>7.2 - 11.5</td>
<td>1500</td>
</tr>
<tr>
<td>MA46485</td>
<td>10.0</td>
<td>7.5 - 12.0</td>
<td>1500</td>
</tr>
</tbody>
</table>

1. All GaAs tuning varactors are available in chip form. Please contact factory for part number information.
2. The values guaranteed for gamma are measured on unpackaged chips. The total capacitance versus bias voltage curve will deviate slightly from the chip capacitance versus bias voltage curve due to the package parasitic capacitance (Cp).
3. Case parasitics (Cp and Ls) are given for most case styles along with case outlines in the appendix.
4. Closer tolerances are available upon request.
5. Reverse voltage (Vbr) is measured at 10 microamps.
6. The total capacitance and capacitance ratios shown are for diodes housed in case style 30 with Cp= 0.170 pF unless otherwise specified. Other case styles will result in different values.
7. This part is offered in die form, shipped in a gel pack. The part number is MAVR-046479-01340G.
8. For part number MA46470, the Junction Capacitance Ratio \((C_{2}/C_{20})\) = 6.2 - 8.7.
GaAs Hyperabrupt Varactor Diode
Gamma = 1.0, 1.25, & 1.5

MA464xx Series
Rev. V8

Absolute Maximum Ratings9
@ $T_A = +25\,^\circ\text{C}$ (Unless Otherwise Noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse Voltage</td>
<td>Breakdown Voltage</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-65°C to +175°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>65°C to +200°C</td>
</tr>
</tbody>
</table>

9. Operation of this device above any one of these parameters may cause permanent damage. The maximum storage and operating temperature of the plastic ODS-1088 case style is 125°C.

Environmental Ratings per MIL-STD-750

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Method</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Temperature</td>
<td>1031</td>
<td>See Absolute Maximum Ratings</td>
</tr>
<tr>
<td>Temperature Cycle</td>
<td>1051</td>
<td>10 cycles, -65°C to +175°C</td>
</tr>
<tr>
<td>Shock</td>
<td>2016</td>
<td>500 g’s</td>
</tr>
<tr>
<td>Vibration</td>
<td>2056</td>
<td>15 g’s</td>
</tr>
</tbody>
</table>

Typical Performance Curves

\textbf{Junction Capacitance vs. Tuning Voltage}

\textbf{Gamma vs. Reverse Bias Voltage}
GaAs Hyperabrupt Varactor Diode
Gamma = 1.0, 1.25, & 1.5

Typical Performance Curves

Gamma = 1.0
Total Capacitance vs. Reverse Bias Voltage (ODS-30)

[Graph showing total capacitance vs. reverse bias voltage for MA464xx Series with gamma = 1.0]

Gamma = 1.0
Junction Capacitance vs. Reverse Bias Voltage (DIE)

[Graph showing junction capacitance vs. reverse bias voltage for MA464xx Series with gamma = 1.0]

Gamma = 1.25
Total Capacitance vs. Reverse Bias Voltage (ODS-30)

[Graph showing total capacitance vs. reverse bias voltage for MA464xx Series with gamma = 1.25]

Gamma = 1.25
Junction Capacitance vs. Reverse Bias Voltage (DIE)

[Graph showing junction capacitance vs. reverse bias voltage for MA464xx Series with gamma = 1.25]

Gamma = 1.25
Total Capacitance vs. Reverse Bias Voltage (ODS-30)

[Graph showing total capacitance vs. reverse bias voltage for MA464xx Series with gamma = 1.25]

Gamma = 1.25
Junction Capacitance vs. Reverse Bias Voltage (DIE)

[Graph showing junction capacitance vs. reverse bias voltage for MA464xx Series with gamma = 1.25]
GaAs Hyperabrupt Varactor Diode
Gamma = 1.0, 1.25, & 1.5

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.
These materials are provided in connection with MACOM’s products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.