MA46410 thru MA46485 Series

GaAs Hyperabrupt Varactor Diode
Gamma = 1.0, 1.25, & 1.50

Features
- Constant Gamma = 1.0, 1.25 or 1.5
- High Q (up to 4000 at -4 Volts)
- More Linear Frequency Tuning
- High and Nearly Constant Modulation Sensitivity
- Lead-Free (RoHs Compliant) equivalents available with 260°C reflow compatibility.

Description and Applications
The MA46450, MA46470 and MA46410 series of tuning varactors are hyperabrupt junction Gallium Arsenide diodes featuring constant gamma 1.0 (MA46450 series), 1.25 (MA46470 series) or 1.5 (MA46410 series). These diodes offer high Q (up to 4000) permitting excellent tuning performance from VHF through Ka band. Each part in this series exhibits the large change in capacitance versus bias voltage characteristic of hyperabrupt junctions. The standard capacitance tolerance is ±10%, with tighter tolerances available. Capacitance matching at one or more bias voltages is also available. All diode types are available in a wide selection of ceramic packages and in chip form. The constant gamma value of 1.0, 1.25 or 1.5 available with these diodes enables the circuit designer to produce significant improvements in circuit performance. Constant gamma tuning varactors permit more linear VCO frequency tuning than do conventional hyperabrupt tuning varactors. These varactors are particularly well suited for use in voltage tuned filters, analog phase shifters, and modulator circuits.

Absolute Maximum Ratings
@ \(T_A = +25 \degree C \) (Unless Otherwise Noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse Voltage</td>
<td>Breakdown Voltage</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-65°C to +175°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>65°C to +200°C</td>
</tr>
</tbody>
</table>

1. Operation of this device above any one of these parameters may cause permanent damage. The maximum storage and operating temperature of the plastic ODS-1088 case style is 125°C.

TYPICAL JUNCTION CAPACITANCE vs TUNING VOLTAGE
MA46410 thru MA46485 Series

GaAs Hyperabrupt Varactor Diode
Gamma = 1.0, 1.25, & 1.50

Electrical Specifications @ $T_A = +25 \, ^\circ C$

MA46450 Series Gamma = 1.0

- **Gamma** $^4 = 0.9 - 1.1$, **VR** $= 2 - 20$ Volts
- **Junction Capacitance Ratio (CJ2/CJ20)** $= 5.0 - 8.0$
- **Breakdown Voltage** @ $I_R = 10 \mu A$, $V_S = 22$ V Min
- **Reverse Leakage Current** @ $V_R =18V$, $I_R = 100 \, nA$ Max

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Case Style</th>
<th>Total Capacitance 2,3,4,5</th>
<th>Total Capacitance Ratio 7</th>
<th>Q Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA46450</td>
<td>30</td>
<td>0.5</td>
<td>2.0-3.8</td>
<td>4000</td>
</tr>
<tr>
<td>MA46451</td>
<td>30</td>
<td>0.7</td>
<td>2.9-4.4</td>
<td>4000</td>
</tr>
<tr>
<td>MA46452</td>
<td>30</td>
<td>1.0</td>
<td>3.6-5.2</td>
<td>3000</td>
</tr>
<tr>
<td>MA46457</td>
<td>30</td>
<td>2.2</td>
<td>4.1-6.1</td>
<td>3000</td>
</tr>
<tr>
<td>MA46461</td>
<td>30</td>
<td>4.7</td>
<td>4.8-7.2</td>
<td>1500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Case Style</th>
<th>Total Capacitance 2,3,4,5</th>
<th>Total Capacitance Ratio 7</th>
<th>Q Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA46470</td>
<td>30</td>
<td>0.5</td>
<td>2.2/4.1</td>
<td>4000</td>
</tr>
<tr>
<td>MA46471</td>
<td>30</td>
<td>0.7</td>
<td>3.6/5.6</td>
<td>4000</td>
</tr>
<tr>
<td>MA46472</td>
<td>30</td>
<td>1.0</td>
<td>4.8/7.4</td>
<td>3000</td>
</tr>
<tr>
<td>MA46473</td>
<td>30</td>
<td>1.2</td>
<td>5.0/7.4</td>
<td>3000</td>
</tr>
<tr>
<td>MA46474</td>
<td>30</td>
<td>1.5</td>
<td>6.6/8.7</td>
<td>3000</td>
</tr>
<tr>
<td>MA46475</td>
<td>30</td>
<td>1.8</td>
<td>6.6/8.7</td>
<td>3000</td>
</tr>
<tr>
<td>MA46476</td>
<td>30</td>
<td>2.0</td>
<td>6.6/8.7</td>
<td>3000</td>
</tr>
<tr>
<td>MA46477</td>
<td>30</td>
<td>2.2</td>
<td>6.6/8.7</td>
<td>3000</td>
</tr>
<tr>
<td>MA46479</td>
<td>30</td>
<td>3.3</td>
<td>6.4/10.0</td>
<td>2000</td>
</tr>
<tr>
<td>MA46480</td>
<td>30</td>
<td>3.7</td>
<td>6.8/11.0</td>
<td>2000</td>
</tr>
<tr>
<td>MA46481</td>
<td>30</td>
<td>5.1</td>
<td>6.9/11.1</td>
<td>1500</td>
</tr>
<tr>
<td>MA46483</td>
<td>30</td>
<td>6.8</td>
<td>7.2/11.5</td>
<td>1500</td>
</tr>
<tr>
<td>MA46485</td>
<td>30</td>
<td>10.0</td>
<td>7.5/12.0</td>
<td>1500</td>
</tr>
</tbody>
</table>

1. All GaAs tuning varactors are available in chip form as well as the case styles shown on the following page. When ordering, specify the desired case by adding the case designation as a suffix to the type number.
2. Case parasitics (Cp and Ls) are given for most case styles along with case outlines in the appendix. The Cp values listed typically have tolerances of ±0.02 pF.
3. The nominal tolerance at -4 Volts is ±10%. Closer tolerances are available upon request. By adding the suffix A to the part number, a tolerance of ±5% at -4 Volts is guaranteed.
4. The values guaranteed for gamma are measured on unpackaged chips. The total capacitance versus bias voltage curve will deviate slightly from the chip capacitance versus bias voltage curve due to the package parasitic capacitance (Cp).
5. Capacitance is measured at 1 MHz.
6. Reverse voltage (VB) is measured at 10 microamps.
7. The total capacitance and capacitance ratios shown are for diodes housed in case style 30. Other case styles will result in different values.

Electrical Specifications @ $T_A = +25 \, ^\circ C$

MA46470 thru MA46485 Series Gamma = 1.25

- **Gamma** $^4 = 1.13-1.38$, **VR** $= 2 - 20$ Volts
- **Breakdown Voltage** @ $I_R = 10 \mu A$, $V_S = 22$ V Min
- **Reverse Leakage Current** @ $V_R =18V$, $I_R = 100 \, nA$ Max

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Case Style</th>
<th>Total Capacitance 2,3,4,5</th>
<th>Total Capacitance Ratio 7</th>
<th>Q Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA46490</td>
<td>30</td>
<td>0.5</td>
<td>2.2/4.1</td>
<td>4000</td>
</tr>
<tr>
<td>MA46491</td>
<td>30</td>
<td>0.7</td>
<td>3.6/5.6</td>
<td>4000</td>
</tr>
<tr>
<td>MA46492</td>
<td>30</td>
<td>1.0</td>
<td>4.8/7.4</td>
<td>3000</td>
</tr>
<tr>
<td>MA46493</td>
<td>30</td>
<td>1.2</td>
<td>5.0/7.4</td>
<td>3000</td>
</tr>
<tr>
<td>MA46494</td>
<td>30</td>
<td>1.5</td>
<td>6.6/8.7</td>
<td>3000</td>
</tr>
<tr>
<td>MA46495</td>
<td>30</td>
<td>1.8</td>
<td>6.6/8.7</td>
<td>3000</td>
</tr>
<tr>
<td>MA46496</td>
<td>30</td>
<td>2.0</td>
<td>6.6/8.7</td>
<td>3000</td>
</tr>
<tr>
<td>MA46497</td>
<td>30</td>
<td>2.2</td>
<td>6.6/8.7</td>
<td>3000</td>
</tr>
<tr>
<td>MA46499</td>
<td>30</td>
<td>3.3</td>
<td>6.4/10.0</td>
<td>2000</td>
</tr>
<tr>
<td>MA46500</td>
<td>30</td>
<td>3.7</td>
<td>6.8/11.0</td>
<td>2000</td>
</tr>
<tr>
<td>MA46502</td>
<td>30</td>
<td>5.1</td>
<td>6.9/11.1</td>
<td>1500</td>
</tr>
<tr>
<td>MA46503</td>
<td>30</td>
<td>6.8</td>
<td>7.2/11.5</td>
<td>1500</td>
</tr>
<tr>
<td>MA46505</td>
<td>30</td>
<td>10.0</td>
<td>7.5/12.0</td>
<td>1500</td>
</tr>
</tbody>
</table>

ADVANCED: Data Sheets contain information regarding a product MA-A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product MA-A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.
MA46410 thru MA46485 Series

GaAs Hyperabrupt Varactor Diode
Gamma = 1.0, 1.25, & 1.50

Typical Performance Curves
MA46410 thru MA46485 Series

GaAs Hyperabrupt Varactor Diode
Gamma = 1.0, 1.25, & 1.50

Typical Performance Curves

TOTAL CAPACITANCE vs REVERSE BIAS VOLTAGE (γ = 1.25)
(PARTS IN CASE STYLE 30)

JUNCTION CAPACITANCE vs REVERSE BIAS VOLTAGE (γ = 1.25)
(CHIPS)

TOTAL CAPACITANCE vs REVERSE BIAS VOLTAGE (γ = 1.50)
(PARTS IN CASE STYLE 30)

JUNCTION CAPACITANCE vs REVERSE BIAS VOLTAGE (γ = 1.50)
(CHIPS)

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.
MA46410 thru MA46485 Series

GaAs Hyperabrupt Varactor Diode
Gamma = 1.0, 1.25, & 1.50

Environmental Ratings PER MIL-STD-750

<table>
<thead>
<tr>
<th>Method</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Temperature</td>
<td>1031</td>
</tr>
<tr>
<td>Temperature Cycle</td>
<td>1051</td>
</tr>
<tr>
<td>Shock</td>
<td>2016</td>
</tr>
<tr>
<td>Vibration</td>
<td>2056</td>
</tr>
</tbody>
</table>

Case Styles (Dimensions are available upon request)

Typical Coaxial Packages

Typical Coplanar Packages

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.