Features
- Constant Gamma = 1.0, 1.25 & 1.5
- High Q (up to 4000 at -4 Volts)
- More Linear Frequency Tuning
- High and Nearly Constant Modulation Sensitivity
- Lead-Free (RoHS Compliant) equivalents available with 260°C reflow compatibility

Description and Applications
The MA46450, MA46470 and MA46410 series of tuning varactors are hyperabrupt junction Gallium Arsenide diodes featuring constant gamma 1.0 (MA46450 series), 1.25 (MA46470 series) & 1.5 (MA46410 series). These diodes offer high Q (up to 4000) permitting excellent tuning performance from VHF through Ka band. Each part in this series exhibits the large change in capacitance versus bias voltage characteristic of hyperabrupt junctions. The standard capacitance tolerance is ±10%, with tighter tolerances available. Capacitance matching at one or more bias voltages is also available. All diode types are available in a wide selection of ceramic packages and in chip form. The constant gamma value of 1.0, 1.25 & 1.5 available with these diodes enables the circuit designer to produce significant improvements in circuit performance. Constant gamma tuning varactors permit more linear VCO frequency tuning than do conventional hyperabrupt tuning varactors. These varactors are particularly well suited for use in voltage tuned filters, analog phase shifters, and modulator circuits.

Common Case Styles

Absolute Maximum Ratings
@ $T_A=+25 \, ^\circ C$ (Unless Otherwise Noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse Voltage</td>
<td>Breakdown Voltage</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-65°C to +175°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>65°C to +200°C</td>
</tr>
</tbody>
</table>

1. Operation of this device above any one of these parameters may cause permanent damage. The maximum storage and operating temperature of the plastic ODS-1088 case style is 125°C.

Typical Junction Capacitance vs. Tuning Voltage

Packaged Tuning Varactor Equivalent Circuit
MA46410 thru MA46480 Series

GaAs Hyperabrupt Varactor Diode

Gamma = 1.0, 1.25, & 1.5

Electrical Specifications\(^2\): \(T_A = +25°C \)

Gamma = 1.0\(^3\) MA46450 Series

- Junction Capacitance Ratio \((C_{J2}/C_{J12}) = 5.0 - 8.0\)
- Breakdown Voltage \(@ I_R = 10 \mu A, V_b = 22 V\) min.
- Reverse Leakage Current \(@ V_R = 18 V, I_R = 100 nA\) max.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Total Capacitance +/-10% (^4,5,6,7)</th>
<th>Total Capacitance Ratio(^2)</th>
<th>Q Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA46450</td>
<td>0.5</td>
<td>2.0-3.8</td>
<td>4000</td>
</tr>
<tr>
<td>MA46451</td>
<td>0.7</td>
<td>2.9-4.4</td>
<td>4000</td>
</tr>
<tr>
<td>MA46452</td>
<td>1.0</td>
<td>3.6-5.2</td>
<td>3000</td>
</tr>
<tr>
<td>MA46457</td>
<td>2.2</td>
<td>4.1-6.1</td>
<td>3000</td>
</tr>
<tr>
<td>MA46461</td>
<td>4.7</td>
<td>4.8-7.2</td>
<td>1500</td>
</tr>
</tbody>
</table>

Gamma = 1.5\(^3\) MA46410 thru MA46425 Series

- Junction Capacitance Ratio \((C_{J2}/C_{J12}) = 6.2 - 10.8\)
- Breakdown Voltage \(@ I_R = 10 \mu A, V_b = 18 V\) min.
- Reverse Leakage Current \(@ V_R = 10 V, I_R = 100 nA\) max.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Total Capacitance +/-10% (^4,5,6,7)</th>
<th>Total Capacitance Ratio(^2)</th>
<th>Q Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA46410</td>
<td>0.30-0.43</td>
<td>2.7-4.3</td>
<td>3000</td>
</tr>
<tr>
<td>MA46413</td>
<td>0.90-1.10</td>
<td>4.2-5.7</td>
<td>2500</td>
</tr>
<tr>
<td>MA46416</td>
<td>1.62-1.98</td>
<td>5.2-4.9</td>
<td>2500</td>
</tr>
<tr>
<td>MA46418</td>
<td>2.42-2.97</td>
<td>5.7-7.6</td>
<td>1800</td>
</tr>
<tr>
<td>MA46425</td>
<td>9.00-11.00</td>
<td>6.6-8.8</td>
<td>1200</td>
</tr>
</tbody>
</table>

2. All GaAs tuning varactors are available in chip form. Please contact factory for part number information.

3. The values guaranteed for gamma are measured on unpackaged chips. The total capacitance versus bias voltage curve will deviate slightly from the chip capacitance versus bias voltage curve due to the package parasitic capacitance (Cp).

4. Case parasitics (Cp and Ls) are given for most case styles along with case outlines in the appendix.

5. Closer tolerances are available upon request.

6. Reverse voltage (Vbr) is measured at 10 microamps.

7. The total capacitance and capacitance ratios shown are for diodes housed in case style 30 with Cp=0.170 pF unless otherwise specified. Other case styles will result in different values.

8. This part is offered in die form, shipped in a gel pack. The part number is MAVR-046479-01340G.

MA-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support
GaAs Hyperabrupt Varactor Diode

Gamma = 1.0, 1.25, & 1.5

Typical Performance Curves

Gamma vs. Reverse Bias Voltage

![Graph showing Gamma vs. Reverse Bias Voltage](image)

Gamma = 1.0

Total Capacitance vs. Reverse Bias Voltage
(Packaged parts in case style ODS-30)

![Graph showing Total Capacitance vs. Reverse Bias Voltage](image)

Gamma = 1.0
Junction Capacitance vs. Reverse Bias Voltage
(DIE)

![Graph showing Junction Capacitance vs. Reverse Bias Voltage](image)
GaAs Hyperabrupt Varactor Diode
Gamma = 1.0, 1.25, & 1.5

Typical Performance Curves

Gamma = 1.25
Total Capacitance vs. Reverse Bias Voltage
(Packaged parts in case style ODS-30)

![Gamma = 1.25 Total Capacitance vs. Reverse Bias Voltage](image1)

Gamma = 1.25
Junction Capacitance vs. Reverse Bias Voltage
(DIE)

![Gamma = 1.25 Junction Capacitance vs. Reverse Bias Voltage](image2)

Gamma = 1.5
Total Capacitance vs. Reverse Bias Voltage
(Packaged parts in case style ODS-30)

![Gamma = 1.5 Total Capacitance vs. Reverse Bias Voltage](image3)

Gamma = 1.5
Junction Capacitance vs. Reverse Bias Voltage
(DIE)

![Gamma = 1.5 Junction Capacitance vs. Reverse Bias Voltage](image4)
Environmental Ratings per MIL-STD-750

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Method</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Temperature</td>
<td>1031</td>
<td>See Absolute Maximum Ratings</td>
</tr>
<tr>
<td>Temperature Cycle</td>
<td>1051</td>
<td>10 cycles, -65°C to +175°C</td>
</tr>
<tr>
<td>Shock</td>
<td>2016</td>
<td>500 g's</td>
</tr>
<tr>
<td>Vibration</td>
<td>2056</td>
<td>15 g's</td>
</tr>
</tbody>
</table>

Case Styles (Dimensions are available upon request)

Typical Coaxial Packages

Typical Coplanar Packages

For further information and support please visit: https://www.macom.com/support

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.