CMOS Transimpedance Amplifier with AGC for Fiber-optic Networks up to 3.2 Gbps

Applications
- ATM/SDH/SONET
- 2x/4x Fiber Channel

Features
- Typical -23 dBm sensitivity, +3 dBm saturation at 3.2 Gbps (-24 dBm at 2.5 Gbps) when used with 0.9 A/W InGaAs PIN. (Cpd ≤ 0.5 pF BER 10^-10)
- Typical differential transimpedance: 10 kΩ
- Fabricated in standard CMOS
- Differential output
- Operates with standard +3.3 Volt supply
- Available as die only
- Monitor Output
- AGC provides dynamic range of more than 25 dB
- Internal or external bias for photodiode
- PIN or APD sensor
- Same pad layout and die size as M02011/14/15/16

The M02013 is a transimpedance amplifier (TIA) with AGC manufactured in a sub-micron, CMOS process. The AGC allows more than 25 dB of dynamic range, providing a low-cost solution for longer-reach 3.2 Gbps ATM/SONET systems.

For optimum system performance, the M02013 die should be mounted with a silicon or InGaAs PIN photodetector inside a lensed TO-Can or other optical sub-assembly.

The M02013 can either bias the PIN diode from the internal regulator or use an externally biased PIN diode.

A replica of the average photodiode current is available at the MON pad for photo-alignment and Receive Power monitoring (SFF-8472 compliant).

Typical Applications Diagram
CMOS Transimpedance Amplifier with AGC for Fiber-optic Networks up to 3.2 Gbps

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
<th>Operating Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>M02013-xx*</td>
<td>Waffle Pack</td>
<td>–40 °C to 85 °C</td>
</tr>
<tr>
<td>M02013-xx*</td>
<td>Expanded whole wafer on a ring</td>
<td>–40 °C to 85 °C</td>
</tr>
</tbody>
</table>

*xx represents the revision number. Please contact your local sales office for correct digits.

Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Level</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V8</td>
<td>Release</td>
<td>May 2015</td>
<td>Updated logos and page layout. No content changes.</td>
</tr>
<tr>
<td>G (V7)</td>
<td>Release</td>
<td>October 2007</td>
<td>Updated “Typical Applications Diagram” on the front page to show Imon connection. Corrected Imon configuration in Figure 4-1. Corrected PinK connection in the “Alternative Circuit” in Figure 4-1.</td>
</tr>
<tr>
<td>F (V6)</td>
<td>Release</td>
<td>September 2007</td>
<td>Corrected PinA absolute maximum voltage in Table 1-1. Added specifications for Imon in Section 1.4. Added Imon typical performance graph in Figure 1-4. Updated Imon pin description in Section 2.1. Updated Imon functional description in Section 3.2.4. Added applications information for Imon calibration in Section 4.4.</td>
</tr>
<tr>
<td>E (V5)</td>
<td>Release</td>
<td>June 2007</td>
<td>Revised Table 1-1. Separate Applications Information from Functional Description. Add notes to clarify the bonding procedure. Correct bond pad coordinates (x and y values transposed).</td>
</tr>
</tbody>
</table>

Typical Eye Diagram

Eye Diagram for 3.2 Gbps at -20 dBm Input Signal

Pad Configuration

Die size ≈ 1090 x 880 µm
1.0 Product Specification

1.1 Absolute Maximum Ratings

These are the absolute maximum ratings at or beyond which the IC can be expected to fail or be damaged. Reliable operation at these extremes for any length of time is not implied.

Table 1-1. Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Rating</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>Power supply (VCC - GND)</td>
<td>-0.4 to +4.0</td>
<td>V</td>
</tr>
<tr>
<td>TSTG</td>
<td>Storage temperature</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>IIN</td>
<td>PINA input current</td>
<td>8.0 (1, 2)</td>
<td>mA</td>
</tr>
<tr>
<td>VPINAP, VAGC</td>
<td>Maximum input voltage at PINA and AGC</td>
<td>-0.4 to +2.0 (2)</td>
<td>V</td>
</tr>
<tr>
<td>IPINK</td>
<td>Maximum average current sourced out of PINK</td>
<td>10.0</td>
<td>mA</td>
</tr>
<tr>
<td>VPINK, VMON</td>
<td>Maximum input voltage at PINK and MON</td>
<td>-0.4 to Vcc +0.4</td>
<td>V</td>
</tr>
<tr>
<td>IDout</td>
<td>Maximum average current sourced out of Dout and DoutB</td>
<td>10.0 (3)</td>
<td>mA</td>
</tr>
<tr>
<td>VDout</td>
<td>Maximum input voltage at Dout and DoutB</td>
<td>0.0 to +2.0 (3)</td>
<td>V</td>
</tr>
</tbody>
</table>

NOTES:
1. Equivalent to 4.9 mA average current.
2. Do not exceed either the IIN or VPINAP rating. PINA damage will result in performance degradation which is difficult to detect.
3. Do not exceed either the IDout or VDout rating. Output device damage could occur.

1.2 Recommended Operating Conditions

Table 1-2. Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Rating</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>Power supply (VCC – GND)</td>
<td>3.3 ± 10%</td>
<td>V</td>
</tr>
<tr>
<td>CPD</td>
<td>Max. Photodiode capacitance (Vf = 1.8 V, when using PINK), for 3.2 Gbps data rate</td>
<td>0.5</td>
<td>pF</td>
</tr>
<tr>
<td>TA</td>
<td>Operating ambient temperature</td>
<td>-40 to +85</td>
<td>°C</td>
</tr>
</tbody>
</table>
1.3 DC Characteristics

Table 1-3. DC Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_B)</td>
<td>Photodiode bias voltage (PINK – PINA)</td>
<td>1.6</td>
<td>1.8</td>
<td>2.0</td>
<td>V</td>
</tr>
<tr>
<td>(V_{CM})</td>
<td>Common mode output voltage</td>
<td>0.7</td>
<td>1</td>
<td>1.3</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Output voltage swing</td>
<td>0.45</td>
<td>1</td>
<td>1.55</td>
<td>V</td>
</tr>
<tr>
<td>(I_{CC})</td>
<td>Supply current (no loads)</td>
<td>31</td>
<td>42</td>
<td>58</td>
<td>mA</td>
</tr>
<tr>
<td>(R_{LOAD})</td>
<td>Recommended differential output loading</td>
<td>85</td>
<td>100</td>
<td>—</td>
<td>Ω</td>
</tr>
</tbody>
</table>

NOTE:
1. \(100\Omega \) is the load presented by the input of the limiting amplifier.

1.4 AC Characteristics

Table 1-4. AC Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{OUT})</td>
<td>Output impedance (2)</td>
<td>single ended</td>
<td>25</td>
<td>40</td>
<td>60</td>
<td>Ω</td>
</tr>
<tr>
<td>LFC</td>
<td>Low frequency cutoff (3)</td>
<td>—</td>
<td>50</td>
<td>80</td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>(V_D)</td>
<td>Differential output voltage</td>
<td>100Ω differential load</td>
<td>—</td>
<td>275</td>
<td>500</td>
<td>mV</td>
</tr>
<tr>
<td>DCD</td>
<td>Duty cycle distortion</td>
<td>3.2 Gbps</td>
<td></td>
<td>—</td>
<td>20</td>
<td>ps</td>
</tr>
<tr>
<td>DJ</td>
<td>Deterministic jitter (includes DCD)</td>
<td>3.2 Gbps, (2^{23})-1 PRBS</td>
<td></td>
<td>—</td>
<td>35</td>
<td>ps_{pp}</td>
</tr>
<tr>
<td>In_{rms}</td>
<td>Total input RMS noise</td>
<td>DC to 2.3 GHz, (C_{in} = 0.5 \ pF)</td>
<td>—</td>
<td>475</td>
<td>600</td>
<td>nA</td>
</tr>
<tr>
<td>Pin</td>
<td>Example dynamic range of optical input (4)</td>
<td>-22</td>
<td>—</td>
<td>+3</td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>PIN (mean), min</td>
<td>Minimum Optical Sensitivity (4)</td>
<td>3.2 Gbps</td>
<td>—</td>
<td>-23</td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>I_{mon_off}</td>
<td>Monitor Output Offset (5)</td>
<td>(V_{MON} = 1 \text{V to } V_{CC})</td>
<td></td>
<td>—</td>
<td>±4.0</td>
<td>μA</td>
</tr>
<tr>
<td>I_{mon_error}</td>
<td>Monitor Output Accuracy (6)</td>
<td>(4.5μA \leq I_{\text{IN_avg}} \leq 12mA)</td>
<td>—</td>
<td>—</td>
<td>±2.5</td>
<td>dB</td>
</tr>
</tbody>
</table>

NOTES:
1. Die designed to operate over an ambient temperature range of \(-40°C \) to \(+85°C \), \(T_A \) and \(V_{CC} \) range from 3.0 - 3.6V. Typical values are tested at \(T_A = 25°C \) and \(V_{CC} = 3.3V \).
2. Measured at 1 MHz.
3. Input –22 dBm, Extinction Ratio = 10, Temp = 25°C.
4. At stated data rate, BER \(10^{-10} \), PD capacitance = 0.5 pF, Responsivity 0.9 A/W, Extinction Ratio = 10.
5. See Applications Information (Section 4.4) for recommended offset calibration.
6. After offset removed, Extinction Ratio \(\leq 20 \text{dB} \).
1.5 Dynamic Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>Transimpedance</td>
<td>3.5</td>
<td>5</td>
<td>7</td>
<td>kΩ</td>
</tr>
<tr>
<td></td>
<td>- Single ended</td>
<td>7</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Differential</td>
<td></td>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>BW</td>
<td>Bandwidth to -3 dB point @ -22 dBm, 0.9A/W, 0.5 pF PD</td>
<td>2.0</td>
<td>2.4</td>
<td>—</td>
<td>GHz</td>
</tr>
<tr>
<td>RC</td>
<td>AGC loop time constant</td>
<td>—</td>
<td>2</td>
<td>—</td>
<td>µs</td>
</tr>
<tr>
<td>I_{AGC}</td>
<td>AGC threshold</td>
<td>30</td>
<td>—</td>
<td>—</td>
<td>µA_{PP}</td>
</tr>
<tr>
<td>I_{OVL}</td>
<td>Maximum functional input current</td>
<td>3.6 (1)</td>
<td>—</td>
<td>—</td>
<td>mA</td>
</tr>
<tr>
<td>PSRR</td>
<td>Power supply rejection, f < 4 MHz</td>
<td>20</td>
<td>28</td>
<td>—</td>
<td>dB</td>
</tr>
</tbody>
</table>

NOTE:
1. Equivalent to +3.4 dBm input optical power at Extinction Ratio = 10, Responsivity = 1.0 A/W.

1.6 Typical Performance

Vcc = 3.3V, Temperature = 25 °C, Lin = 1 nH, unless otherwise stated, TIA gain is differential.

Figure 1-1. Typical Performance Diagrams 1 of 4
Vcc = 3.3V, Temperature = 25 °C, Lin = 1 nH, unless otherwise stated, TIA gain is differential.

Figure 1-2. Typical Performance Diagrams 2 of 4
CMOS Transimpedance Amplifier with AGC for Fiber-optic Networks up to 3.2 Gbps

Vcc = 3.3V, Temperature = 25 °C, Lin = 1 nH, unless otherwise stated, TIA gain is differential.

Figure 1-3. Typical Performance Diagrams 3 of 4
Vcc = 3.3V, Temperature = 25 °C, Lin = 1 nH, unless otherwise stated, TIA gain is differential.

Figure 1-4. Typical Performance Diagrams 3 of 3

- **Deterministic Jitter vs Iin**
 - Jitter (ps p-p)
 - Input Current (mA)

- **Icc vs. Temperature**
 - Junction Temperature (ºC)
 - Icc (mA)
 - Vcc = 3.6V
 - Vcc = 3.3V
 - Vcc = 3.0V

- **Typical Imon Error Range vs. Input Power with AC Signal Applied (after Offset Calibration)**
 - Average Input Power (dBm)
 - Imon Error (dB)
2.0 Pin/Pad Definitions

2.1 Pin/Pad Definitions

Table 2-1. Pin/Pad Definitions

<table>
<thead>
<tr>
<th>Die Pad No</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AGC</td>
<td>Monitor or force AGC voltage</td>
</tr>
<tr>
<td>2</td>
<td>V\text{CC}</td>
<td>Power pin. Connect to most positive supply</td>
</tr>
<tr>
<td>3</td>
<td>PINK</td>
<td>Common PIN input. Connect photo diode cathode here and a 470 pF capacitor to Gnd (1)</td>
</tr>
<tr>
<td>4</td>
<td>PINA</td>
<td>Active PIN input. Connect to photo diode anode</td>
</tr>
<tr>
<td>5</td>
<td>V\text{CC}</td>
<td>Power pin. Connect to most positive supply (only one V\text{CC} pad needs to be connected)</td>
</tr>
<tr>
<td>6</td>
<td>MON</td>
<td>Analog current sink output. Current matched to average photodiode current</td>
</tr>
<tr>
<td>7</td>
<td>D\text{OUT}</td>
<td>Differential data output (goes low as light increases)</td>
</tr>
<tr>
<td>8</td>
<td>D\text{OUTGND}</td>
<td>Ground return for D\text{OUT} pad (all GND pads must be connected)</td>
</tr>
<tr>
<td>9</td>
<td>GND</td>
<td>Ground pin. Connect to the most negative supply (2)</td>
</tr>
<tr>
<td>10</td>
<td>GND</td>
<td>Ground pin. Connect to the most negative supply (2)</td>
</tr>
<tr>
<td>11</td>
<td>D\text{OUTGND}</td>
<td>Ground return for D\text{OUT} pad (2)</td>
</tr>
<tr>
<td>12</td>
<td>D\text{OUT}</td>
<td>Differential data output (goes high as light increases)</td>
</tr>
<tr>
<td>NA</td>
<td>Backside</td>
<td>Backside. Connect to the lowest potential, usually ground</td>
</tr>
</tbody>
</table>

NOTES:
1. Alternatively the photodiode cathode may be connected to a decoupled positive supply, e.g. V\text{CC}.
2. All ground pads are common on the die. Only one ground pad needs to be connected to the TO-Can ground. However, connecting more than one ground pad to the TO-Can ground, particularly those across the die from each other can improve performance in noisy environments.
Figure 2-1. Bare Die Layout

![Bare Die Layout Diagram]
3.0 Functional Description

3.1 Overview

The M02013 is a transimpedance amplifier (TIA) with AGC manufactured in a sub-micron, CMOS process. The AGC allows more than 25 dBm of dynamic range, providing a low-cost solution for longer-reach 3.2 Gbps ATM/SONET systems.

For optimum system performance, the M02013 die should be mounted with a silicon or InGaAs PIN photodetector inside a lensed TO-Can or other optical sub-assembly.

The M02013 can either bias the PIN diode from the internal regulator or use an externally biased PIN diode.

A replica of the average photodiode current is available at the MON pad for photo-alignment and 'Loss of Signal' (LOS) monitoring.

Figure 3-1. M02013 Block Diagram
3.2 General Description

3.2.1 TIA (Transimpedance Amplifier)

The transimpedance amplifier consists of a high gain single-ended CMOS amplifier (TIA), with a feedback resistor. The feedback creates a virtual earth low impedance at the input and virtually all of the input current passes through the feedback resistor, defining the voltage at the output. Advanced CMOS design techniques are employed to maintain the stability of this stage across all input conditions.

Single-ended amplifiers have inherently poor power supply noise rejection. For this reason, an on-chip low dropout linear regulator has been incorporated into the design to give excellent noise rejection up to several MHz. Higher frequency power supply noise is removed by the external 470 pF decoupling capacitor connected to PINK.

The circuit is designed for PIN photodiodes in the “grounded cathode” configuration, with the anode connected to the input of the TIA and the cathode connected to AC ground, such as the provided PINK terminal. Reverse DC bias is applied to reduce the photodiode capacitance. Avalanche photodiodes can be connected externally to a higher voltage.

3.2.2 AGC

The M02013 has been designed to operate over the input range of +3 dBm to -23 dBm @ 3.2 Gbps and -24 dBm @ 2.5 Gbps. This represents a ratio of 1:300, whereas the acceptable dynamic range of the output is only 1:30 which implies a compression of 10:1 in the transimpedance. The design uses a MOS transistor operating as a “voltage controlled resistor” to achieve the transimpedance variation.

Another feature of the AGC is that it only operates on signals greater than –17.5 dBm (@ 0.9 A/W). This knee in the gain response is important when setting “signal detect” functions in the following post amplifier. It also aids in active photodiode alignment.

The AGC pad allows the AGC to be disabled during photodiode alignment by grounding the pad through a low impedance. The AGC control voltage can be monitored during normal operation at this pad by a high impedance (>10 MΩ) circuit.

3.2.3 Output Stage

The signal from the TIA enters a phase splitter followed by a DC-shift stage and a pair of voltage follower outputs. These are designed to drive a differential (100 Ω) load. They are stable for driving capacitive loads, such as interstage filters. Each output has its own GND pad, all four GND pads on the chip should be connected for proper operation. Since the M02013 exhibits rapid roll-off (3 pole), simple external filtering is sufficient.

3.2.4 Monitor O/P

High impedance output sinks a replica average photodiode current for photo-alignment and monitoring purposes. This output is compatible with the DDMI Receive Power Specification (SFF-8472) and MACOM’s DDMI controller products. Ensure that the voltage on VMON is in the range of 1V to VCC. Refer to Figure 4-1.
4.0 Applications Information

4.1 Recommended Pin Diode Connections

Figure 4-1. Suggested PIN Diode Connection Methods

Recommended Circuit:

- PINA
- DOUT
- DOUTB
- VCC
- PINK
- MON
- GND
- TIA Bond Pad
- TO Can Lead
- Rm
- 1 nF
- 470 pF
- PDC_Bias
- 500 Ω
- VCC
- MON
- DOUT
- DOUTB
- TIA Bond Pad
- TO Can Lead
- Rm
- 1 nF
- 470 pF
- PDC
- 500 Ω
- VCC
- MON
- DOUT
- DOUTB
- TIA Bond Pad
- TO Can Lead
- Rm
- 1 nF
- 470 pF
- PDC
- 500 Ω
- VCC
- MON
- DOUT
- DOUTB
- TIA Bond Pad
- TO Can Lead
- Rm
- 1 nF
- 470 pF

Alternative Circuit: External PD/APD Bias
4.2 TO-Can Layout

Figure 4-2. Typical Layout Diagram

Notes:
Typical application inside of a 5 lead TO-Can. Only one of the V\textsubscript{CC} pads and one of the GND pads need to be connected (though in noisy environments two or more GND pads connected may improve performance). The backside must be connected to the lowest potential, usually ground, with conductive epoxy or a similar die attach material. If a monitor output is not required then a 4 lead TO-Can may be used.
4.3 Treatment of PINK

PINK requires bypassing to ground with a capacitor when powering a photo diode. If PINK is not used to bias the photo diode, then it is not necessary to bypass an unused PINK.

4.4 Monitor O/P Calibration

This output is compatible with the DDMI Receive Power Specification (SFF-8472) and MACOM’s DDMI controller products. Ensure that the voltage on V_{MON} is in the range of 1V to V_{CC}. Refer to Figure 4-1.

Because the offset for the monitor output can be in either direction (+ or -), it is not possible to calibrate out the offset when there is not an input signal present. To properly calibrate the offset, a known input power between -23 dBm to -18 dBm should be used and the resulting monitor output compared with the expected output and the offset calibrated.

For example, with a responsivity of 1.0, an input power of -20 dBm (equivalent to 10 μW) should result in a monitor current of 10.0 μA. The offset is found by subtracting the measured monitor current from the expected monitor current. This offset is then added (with its sign) to all subsequent monitor readings. In this case, if the monitor current was found to be 8.5 μA, then the offset value to be used is (positive) 1.5μA and all readings should be corrected by adding 1.5 μA to the monitor value. However, if the reading was 10.7 μA, then the offset is -0.7 μA, and 0.7 μA should be subtracted from all subsequent monitor readings.

For the example above, if the responsivity is 0.90, then an input power of -20 dBm (still equivalent to 10 μW) should result in a monitor current of 9.0 μA (0.9 A/W x 10 μW). Again, if the measured current is 8.5 μA, then the offset would be calculated as +0.5 μA and all readings should be corrected by adding 0.5 μA to the monitor value. If the measured current is 10.7 μA, then the offset is -1.7 μA and 1.7 μA should be subtracted from all subsequent monitor readings.
4.5 TO-Can Assembly Recommendations

Figure 4-3. TO-Can Assembly Diagram

NOT Recommended Example

Recommended Example
4.5.1 Assembly

The M02013 is designed to work with a wirebond inductance of 1 nH ±0.25 nH. Many existing TO-Can configurations will not allow wirebond lengths that short, since the PIN diode submount and the TIA die are more than 1 mm away in the vertical direction, due to the need to have the PIN diode in the correct focal plane. This can be remedied by raising up the TIA die with a conductive metal shim. This will effectively reduce the bond wire length. Refer to Figure 4-3 for details.

MACOM recommends ball bonding with a 1 mil (25.4 µm) gold wire. For performance reasons the PINA pad is smaller than the others and also has less via material connected to it. It therefore requires more care in setting of the bonding parameters. For the same reason PINA has no ESD protection.

In addition, please refer to the MACOM Product Bulletin on Recommended Assembly Procedures (document number 0201x-PBD-002-A). Care must be taken when selecting chip capacitors, since they must have good low ESR characteristics up to 1.0 GHz. It is also important that the termination materials of the capacitor be compatible with the attach method used.

For example, Tin/Lead (Pb/Sn) solder finish capacitors are incompatible with silver-filled epoxies. Palladium/Silver (Pd/Ag) terminations are compatible with silver filled epoxies. Solder can be used only if the substrate thick-film inks are compatible with Pb/Sn solders.

4.5.2 Recommended Assembly Procedures

For ESD protection the following steps are recommended for TO-Can assembly:

 a. Ensure good humidity control in the environment (to help minimize ESD).
 b. Consider using additional ionization of the air (also helps minimize ESD).
 c. It is best to ensure that the body of the TO-can header or the ground lead of the header is grounded through the wire-bonding fixture. The best solution will ensure that the VCC lead of the TO-Can is also grounded. When this is done and the procedure below is followed, the photodiode will help reduce the impact to PINA of any positive charge on the wire bonder when bonding to PINA, which is the very last bond placed. (Because the PD is already bonded to PINK and PINK has an internal ESD diode between itself and VCC, if VCC is grounded, this will help protect PINA.)
 d. The most reliable protection to prevent ESD damage on the die is to assure that the wirebond (including the spool, clamp, etc.) is properly grounded.

1. Wire bond the ground pad(s) of the die first.
2. Then wire bond the VCC pad to the TO-Can lead.
3. Then wire bond any other pads going to the TO-Can leads (such as DOUT, DOUT and possibly MON)
4. Next wire bond any capacitors inside the TO-Can.
5. Inside the TO-can, wire bond PINK.
6. The final step is to wire bond PINA.
4.6 TIA Use with Externally Biased Detectors

In some applications, MACOM TIAs are used with detectors biased at a voltage greater than available from TIA PIN cathode supply. This works well if some basic cautions are observed. When turned off, the input to the TIA exhibits the following I/V characteristic:

Figure 4-4. TIA Use with Externally Biased Detectors, Powered Off

In the positive direction the impedance of the input is relatively high.
After the TIA is turned on, the DC servo and AGC circuits attempt to null any input currents (up to the absolute maximum stated in Table 1-1) as shown by the I/V curve in Figure 4-5.

Figure 4-5. TIA Use with Externally Biased Detectors, Powered On

It can be seen that any negative voltage below 200 mV is nulled and that any positive going voltage above the PINA standing voltage is nulled by the DC servo. The DC servo upper bandwidth varies from part to part, but is generally at least 30 kHz.

When externally biasing a detector such as an APD where the supply voltage of the APD exceeds that for PINA Table 1-1, care should be taken to power up the TIA first and to keep the TIA powered up until after the power supply voltage of the APD is removed. Failure to do this with the TIA unpowered may result in damage to the input FET gate at PINA. In some cases the damage may be very subtle, in that nearly normal operation may be experienced with the damage causing slight reductions in bandwidth and corresponding reductions in input sensitivity.
5.0 Die Specification

Figure 5-1. Bare Die Information

Notes:
Process technology: CMOS, Silicon Nitride passivation
Die thickness: 300 µm
Pad metallization: Aluminium
Die size: 1090 µm x 880 µm
Pad opening (except PINA): 86 µm across flat sides
PINA pad: 70 µm across flat sides (70 µm x 70 µm)
Pad Centers in µm referenced to center of device
Connect backside bias to ground

<table>
<thead>
<tr>
<th>Pad Number</th>
<th>Pad</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AGC</td>
<td>-329</td>
<td>-76</td>
</tr>
<tr>
<td>2 (1)</td>
<td>VCC</td>
<td>-329</td>
<td>-228</td>
</tr>
<tr>
<td>3</td>
<td>PINK</td>
<td>-124</td>
<td>-434</td>
</tr>
<tr>
<td>4</td>
<td>PINA</td>
<td>124</td>
<td>-434</td>
</tr>
<tr>
<td>5 (1)</td>
<td>VCC</td>
<td>329</td>
<td>-228</td>
</tr>
<tr>
<td>6</td>
<td>MON</td>
<td>329</td>
<td>-76</td>
</tr>
<tr>
<td>7</td>
<td>DOUT</td>
<td>329</td>
<td>76</td>
</tr>
<tr>
<td>8 (1)</td>
<td>DOUTGND</td>
<td>329</td>
<td>228</td>
</tr>
<tr>
<td>9a (1, 2)</td>
<td>GND</td>
<td>329</td>
<td>360</td>
</tr>
<tr>
<td>9b (1, 2)</td>
<td>GND</td>
<td>255</td>
<td>434</td>
</tr>
<tr>
<td>9c (1, 2)</td>
<td>GND</td>
<td>124</td>
<td>434</td>
</tr>
<tr>
<td>10a (1, 2)</td>
<td>GND</td>
<td>-124</td>
<td>434</td>
</tr>
<tr>
<td>10b (1, 2)</td>
<td>GND</td>
<td>-255</td>
<td>434</td>
</tr>
<tr>
<td>10c (1, 2)</td>
<td>GND</td>
<td>-329</td>
<td>360</td>
</tr>
<tr>
<td>11 (1)</td>
<td>DOUTGND</td>
<td>-329</td>
<td>228</td>
</tr>
<tr>
<td>12</td>
<td>DOUT</td>
<td>-329</td>
<td>76</td>
</tr>
</tbody>
</table>

NOTES:
1. It is only necessary to bond one VCC pad and one GND pad. However, bonding one of each pad (if available) on each side of the die is encouraged for improved performance in noisy environments.
2. Each location is an acceptable bonding location.
M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM’s Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.