LM202602-H-x-300

PIN Diode Limiter
2 - 6 GHz

Features
- Surface Mount Limiter in 8 mm x 5 mm x 2.5 mm Package
- Higher Average Power Handling than Plastic: 100 W Peak Pulse Power
- Lower Insertion Loss: 0.85 dB
- High IIP3: 19 dBm
- RoHS* Compliant

Description
The LM202602-H-x-300 are surface mount silicon PIN diode limiters manufactured using a proven hybrid manufacturing process incorporating PIN diodes and passive devices integrated on a ceramic substrate. This low profile, compact, surface mount component, offers superior low and high signal performance to comparable MMIC devices in QFN packages. The limiter modules are designed to optimize small signal insertion loss and large signal flat leakage performance in a compact, surface mount package. The LM202602-H-A-300 has shunt PIN limiter diodes and a shunt coil with no DC blocks whereas the LM202602-H-C-300 incorporates shunt PIN limiters diodes, a shunt coil, and DC blocks.

Using PIN diodes with lower thermal resistance (<40 W), RF CW incident power levels of 36 dBm and RF peak incident power levels of 50 dBm at 1 µs RF pulse width, 0.001 duty cycle are very achievable in broadband limiter applications. The lower PIN diode series resistance (<1.5 Ω) coupled with the smaller minority carrier lifetime (<20 ns) provides lower flat leakage power (<20 dBm) and lower spike leakage energy (<0.1 Ergs) for superior LNA protection.

The LM202602-H-x-300 limiters are ideal for 2 to 6 GHz Radar, IED, and WiMax applications requiring high volume, surface mount, solder re-flow manufacturing. These products are durable, reliable, and capable of meeting all military, commercial, and industrial environments.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number (x = A or C)</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM202602-H-x-300-T</td>
<td>tube packaging</td>
</tr>
<tr>
<td>LM202602-H-x-300-R</td>
<td>250 or 500 piece reel</td>
</tr>
<tr>
<td>LM2026202-H-x-300-W</td>
<td>waffle packaging</td>
</tr>
<tr>
<td>LM202602-H-x-300-E</td>
<td>RF evaluation board</td>
</tr>
</tbody>
</table>
PIN Diode Limiter

2 - 6 GHz

Electrical Specifications: Freq. = 2 - 6 GHz, $P_{IN} = 0$ dBm, $T_A = +25^\circ$C, $Z_0 = 50$ Ω

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Loss</td>
<td>2 GHz ≤ f ≤ 6 GHz, $P_{IN} = 0$ dBm</td>
<td>dB</td>
<td>-</td>
<td>0.85</td>
<td>1.1</td>
</tr>
<tr>
<td>Return Loss</td>
<td>2 GHz ≤ f ≤ 6 GHz, $P_{IN} = 0$ dBm</td>
<td>dB</td>
<td>13</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>Input 1 dB Compression Point</td>
<td>2 GHz ≤ f ≤ 6 GHz</td>
<td>dBm</td>
<td>7</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>2ND Harmonic</td>
<td>$P_{IN} = 0$ dBm, $f_0 = 4$ GHz</td>
<td>dBc</td>
<td>-</td>
<td>-50</td>
<td>-45</td>
</tr>
<tr>
<td>Peak Incident Power</td>
<td>RF Pulse Width = 1 μs, duty cycle = 1%</td>
<td>dBm</td>
<td>-</td>
<td>50</td>
<td>51</td>
</tr>
<tr>
<td>CW Incident Power</td>
<td>2 GHz ≤ f ≤ 6 GHz</td>
<td>dBm</td>
<td>-</td>
<td>35</td>
<td>36</td>
</tr>
<tr>
<td>Flat Leakage Power</td>
<td>$P_{IN} = 50$ dBm, RF pulse width = 1 μs, duty cycle = 1%</td>
<td>dBm</td>
<td>-</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>Spike Leakage Energy</td>
<td>$P_{IN} = 50$ dBm peak, RF pulse width = 1 μs, duty cycle = 1%</td>
<td>erg</td>
<td>-</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Recovery Time</td>
<td>50% falling edge of RF pulse to 1 dB IL, $P_{IN} = 50$ dBm peak, RF pulse width = 1 μs, duty cycle = 1%</td>
<td>ns</td>
<td>-</td>
<td>100</td>
<td>150</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF CW Incident Power @ +85°C, Source & Load VSWR <1.2:1 Derate linearly to 0 W @ $T_C = +150^\circ$C³</td>
<td>35 dBm</td>
</tr>
<tr>
<td>RF Peak Incident Power @ +85°C, Source & Load VSWR <1.2:1 Derate linearly to 0 W @ $T_C = +150^\circ$C³</td>
<td>50 dBm</td>
</tr>
<tr>
<td>Thermal Resistance Junction to bottom surface of package</td>
<td>40°C/W</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>+175°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-65°C to +125°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
<tr>
<td>Assembly Temperature</td>
<td>260°C for 10 seconds</td>
</tr>
</tbody>
</table>

1. Exceeding any one or combination of these limits may cause permanent damage to this device.
2. MACOM does not recommend sustained operation near these survivability limits.
3. T_C is defined as the temperature of the bottom surface of the package.
Typical Performance Curves

Insertion Loss vs. Frequency

Return Loss vs. Frequency

CW Output Power vs. CW Input Power
Handling Procedures
Please observe the following precautions to avoid damage:

Static and Moisture Sensitivity
These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 0 (HBM) devices.

The moisture sensitivity level rating for this device is MSL 1.

Environmental Capabilities
This limiter is capable of meeting the environmental requirements of MIL-STD-750, MIL-STD-202 and MIL-STD-883

Assembly Instructions
LM202602-H-x-300 may be placed onto circuit boards with pick and place manufacturing equipment from tube or tape-reel dispensing. The devices are attached to the circuit board using conventional solder re-flow or wave soldering procedures with RoHS type or Sn63/Pb37 type solders per Table 1 and Graph 1 Time-Temperature recommended profile.

RF Circuit Solder Footprint, case style 300 (CS300)

Recommended RF circuit is Rogers R04350B, 10 mils thick.
The hatched metal area on circuit side of device is RF, DC and thermal grounded. Vias should be solid copper fill and gold plated for optimum heat transfer from backside of switch module through circuit vias to metal thermal ground.
Criteria for Proper Mounting on PCB

When a large signal is incident upon the input of the LM202602-H-x-300, the impedance of the coarse limiter diodes is forced to a low value by the charge which is injected into these diodes by the large RF voltage initially present across these diodes. As the impedance of these diodes decreases, an increasingly large impedance mismatch with the impedance of the transmission line to which the limiter is connected is created. Ultimately, the impedance of the coarse limiter diodes is reduced to a few ohms or less. This mismatch creates a standing wave, with a current maximum and voltage minimum located at the position of the coarse limiter diodes. While the large majority of the input signal power is reflected back to its source due to the impedance mismatch, the significant RF current that flows at the current maximum causes Joule heating to occur in the coarse limiter diodes. In order to maintain the junction temperature of these diodes below their maximum rated value, there must be a path with minimal thermal resistance from the coarse diodes to the external system heat sink. Also, there must be a minimal electrical resistance and inductance between the underside of the limiter module package and the system ground in order to achieve maximum RF isolation between the input and the output of the limiter module.

For these reasons, it is imperative that there are no voids in the electrical and thermal paths directly under the coarse limiter diodes. Care must be taken when mounting the LM202602-H-x-300 to avoid voids in the solder joint in the area along the lengthwise axis of the package, under and between the filled vias in the AlN substrate of the module which are shown in the diagram (above). It is also important to ensure no solder voids exist between the limiter module RF ports and the PCB to which the limiter module is attached. No greater than 50% of the remaining metalized area on the bottom of the package may contain solder voids.
The evaluation board for the LM202602-H-x-300 limiter is shown above. This evaluation board comprises two sections: the evaluation circuit for the limiter module; and, a reference transmission line.

The limiter module is mounted in position U1. Its RF input is connected to J1 and its output port is connected to J2, via two 50-Ω microstrip transmission lines.

The reference path 50-Ω microstrip transmission line structure can be utilized to determine the insertion loss of the transmission line structures connected between J1 and the limiter module input, as well as between the limiter module output and J2, so that their respective insertion losses may be subtracted from the total insertion loss measured between J1 and J2. This enables the resolution of the insertion loss of the limiter module only.

The evaluation board is supplied mounted on a heat sink. The maximum RF input power specified in the Absolute Maximum Ratings table must not be exceeded.
Table 1: Time-Temperature Profile for Sn 60 / Pb 40 or RoHS Type Solders

<table>
<thead>
<tr>
<th>Profile Feature</th>
<th>Sn-Pb Eutectic Assembly</th>
<th>Pb-Free Assembly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average ramp-up rate (TL to TP)</td>
<td>3°C/second maximum</td>
<td>3°C/second maximum</td>
</tr>
<tr>
<td>Preheat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Temperature Minimum (TSMIN)</td>
<td>100°C</td>
<td>150°C</td>
</tr>
<tr>
<td>- Temperature Maximum (TSMAX)</td>
<td>150°C</td>
<td>200°C</td>
</tr>
<tr>
<td>- Time (Minimum to maximum) (ts)</td>
<td>60-120 seconds</td>
<td>60-180 seconds</td>
</tr>
<tr>
<td>TSMAX to TL</td>
<td></td>
<td>3°C/second maximum</td>
</tr>
<tr>
<td>- Ramp-up Rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Maintained above:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Temperature (TL)</td>
<td>183°C</td>
<td>217°C</td>
</tr>
<tr>
<td>- Time (TL)</td>
<td>60-150 seconds</td>
<td>60-180 seconds</td>
</tr>
<tr>
<td>Peak Temperature (TP)</td>
<td>225 +0 / -5°C</td>
<td>245 +0 / -5°C</td>
</tr>
<tr>
<td>Time within 5°C of actual Peak Temper-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ture (TP)</td>
<td>10-30 seconds</td>
<td>20-40 seconds</td>
</tr>
<tr>
<td>Ramp-down Rate</td>
<td>6°C/second maximum</td>
<td>6°C/second maximum</td>
</tr>
<tr>
<td>Time 25°C to Peak Temperature</td>
<td>6 minutes maximum</td>
<td>8 minutes maximum</td>
</tr>
</tbody>
</table>

Graph1: Solder Re-Flow Time-Temperature Function

![Graph1: Solder Re-Flow Time-Temperature Function](image-url)
Outline Drawing, Case Style 300 (CS300)

The hatched metal area on circuit side of device is RF, DC and thermal grounded. Dimensions are in inches (mm)
Substrate Material: 20 mil thick Alumina Nitride (ALN)
RF Cover: Black Ceramic
Top Side and Backside Metallization: 100 µ IN. typical plated over Ti-Pd.
MACOM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with MACOM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.