LF2805A

RF Power MOSFET Transistor
5 W, 500 - 1000 MHz, 28 V

Features
- N-Channel enhancement mode device
- DMOS structure
- Lower capacitances for broadband operation
- Common source configuration
- Lower noise floor
- Applications
 - Broadband linear operation
 - 500 MHz to 1400 MHz
- RoHS Compliant

Absolute Maximum Ratings @ 25°C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Rating</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Voltage</td>
<td>VDS</td>
<td>65</td>
<td>V</td>
</tr>
<tr>
<td>Gate-Source Voltage</td>
<td>VGS</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>Drain-Source Current</td>
<td>IDS</td>
<td>1.4</td>
<td>A</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>PD</td>
<td>14.4</td>
<td>W</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>TJ</td>
<td>200</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>TSTG</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Thermal Resistance</td>
<td>θJC</td>
<td>12.1</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Typical Device Impedance

\[
\begin{array}{c|c|c}
F (MHz) & Z_i (\Omega) & Z_{LOAD} (\Omega) \\
\hline
500 & 4.3 - j29.0 & 27.3 + j28.6 \\
1000 & 2.2 - j2.75 & 8.0 + j16.0 \\
1400 & 2.8 - j3.0 & 9.4 + j10.6 \\
\end{array}
\]

\[V_{DD} = 28\, V, I_{DS} = 50\, mA, P_{OUT} = 5.0\, W\]

- \(Z_i \) is the series equivalent input impedance of the device from gate to source.
- \(Z_{LOAD} \) is the optimum series equivalent load impedance as measured from drain to ground.

Electrical Characteristics @ 25°C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Breakdown Voltage</td>
<td>BV(DS)</td>
<td>65</td>
<td>-</td>
<td>V</td>
<td>(V_{GS} = 0.0, V, I_{DS} = 2.0, mA)</td>
</tr>
<tr>
<td>Drain-Source Leakage Current</td>
<td>IDS</td>
<td>-</td>
<td>1.0</td>
<td>mA</td>
<td>(V_{GS} = 28.0, V, V_{DS} = 0.0, V)</td>
</tr>
<tr>
<td>Gate-Source Leakage Current</td>
<td>IGSS</td>
<td>-</td>
<td>1.0</td>
<td>µA</td>
<td>(V_{GS} = 20.0, V, V_{DS} = 0.0, V)</td>
</tr>
<tr>
<td>Gate Threshold Voltage</td>
<td>VGS(TH)</td>
<td>2.0</td>
<td>6.0</td>
<td>V</td>
<td>(V_{DS} = 10.0, V, I_{DS} = 10.0, mA)</td>
</tr>
<tr>
<td>Forward Transconductance</td>
<td>GM</td>
<td>80</td>
<td>-</td>
<td>mS</td>
<td>(V_{DS} = 10.0, V, I_{DS} = 100.0, mA, \Delta V_{GS} = 1.0V, 80, \mu s) Pulse</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>Ciss</td>
<td>-</td>
<td>7</td>
<td>pF</td>
<td>(V_{DS} = 28.0, V, F = 1.0, MHz)</td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>Coss</td>
<td>-</td>
<td>5</td>
<td>pF</td>
<td>(V_{DS} = 28.0, V, F = 1.0, MHz)</td>
</tr>
<tr>
<td>Reverse Capacitance</td>
<td>Crss</td>
<td>-</td>
<td>2.4</td>
<td>pF</td>
<td>(V_{DS} = 28.0, V, F = 1.0, MHz)</td>
</tr>
<tr>
<td>Power Gain</td>
<td>GP</td>
<td>10</td>
<td>-</td>
<td>dB</td>
<td>(V_{DD} = 28.0, V, I_{DS} = 50, mA, P_{OUT} = 5.0, W F =1.0, GHz)</td>
</tr>
<tr>
<td>Drain Efficiency</td>
<td>ηD</td>
<td>50</td>
<td>-</td>
<td>%</td>
<td>(V_{DD} = 28.0, V, I_{DS} = 50, mA, P_{OUT} = 5.0, W F =1.0, GHz)</td>
</tr>
<tr>
<td>Load Mismatch Tolerance</td>
<td>VSWR-T</td>
<td>20:1</td>
<td>-</td>
<td></td>
<td>(V_{DD} = 28.0, V, I_{DS} = 50, mA, P_{OUT} = 5.0, W F =1.0, GHz)</td>
</tr>
</tbody>
</table>

For further information and support please visit:
https://www.macom.com/support
Typical Broadband Performance Curves

CAPACITANCES vs VOLTAGE

F = 1.0 MHz

![CAPACITANCES vs VOLTAGE graph](image)

POWER OUTPUT vs VOLTAGE

F = 1.0 GHz P_{in}=0.5 W I_{DQ}=50 mA

![POWER OUTPUT vs VOLTAGE graph](image)

GAIN vs FREQUENCY

V_{DD}=28 V I_{DQ}=50 mA P_{out}=5.0 W

![GAIN vs FREQUENCY graph](image)

EFFICIENCY vs FREQUENCY

V_{DD}=28 V I_{DQ}=50.0 mA P_{out}=5.0 W

![EFFICIENCY vs FREQUENCY graph](image)

POWER OUTPUT vs POWER INPUT

V_{DD}=28 V I_{DQ}=50 mA

![POWER OUTPUT vs POWER INPUT graph](image)
RF Power MOSFET Transistor
5 W, 500 - 1000 MHz, 28 V

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM’s Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.