

GTVB222611FAV1A

Rev. V1

Features

- GaN on SiC HEMT Technology
- Pulsed CW Performance: 2170 MHz, 48 V, 10 μs pulse width, 10% Duty Cycle, Combined Outputs
- Output Power @ P3dB = 260 W
- Efficiency @ P3dB = 72%
- Thermally Enhanced Package
- RoHS* Compliant

Applications

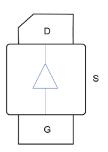
· Cellular, 5G Infrastructure

Description

The GTVB222611FAV1A is a GaN on Silicon Carbide HEMT amplifier designed for use in multistandard cellular power amplifier applications. It features high efficiency, and a thermally enhanced package with earless flange.

Typical RF Performance¹ (Tested in Class AB application test circuit)

 V_{DD} = 48 V, I_{DQ} = 320 mA, P_{OUT} = 56 W avg, T_{C} = 25°C, Channel Bandwidth = 5 MHz, Peak/ Average = 10 dB @ 0.01% CCDF


Frequency	Gain (dB)	Efficiency (%)	OPAR (dB)	ACPR (dBc)
1805 MHz	17.1	38.2	7.2	-32
1880 MHz	16.5	38.1	7.2	-32
2110 MHz	17.1	42.9	7.3	-29
2170 MHz	17.9	43.5	7.2	-29

Measurements taken with the device soldered to a heatsink of the AB application test circuit.

Package Type: H-37265J-2

Functional Schematic

Pin Configuration

Pin#	Function			
D	Drain			
G	Gate			
S	Source (flange)			

Ordering Information

Part Number	Package
GTVB222611FAV1A-R0	50 piece reel
GTVB222611FAV1A-R2	250 piece reel

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

GTVB222611FAV1A

Rev. V1

RF Electrical Specifications²:

Freq. = 2170 MHz, V_{DD} = 48 V, I_{DQ} = 320 mA, P_{OUT} = 47.5 dBm (56.2 W), T_{C} = 25°C, Channel Bandwidth = 3.84 MHz, Peak/Average = 10 dB @ 0.01% CCDF

Parameter	Symbol	Min.	Тур.	Max.	Units
Gain	Gps	16.0	17.0	_	dB
Drain Efficiency	Eff	32.0	36.9	_	%
Adjacent Channel Power Ratio	ACPR	_	-31	-26	dBc
Output PAR @ 0.01% CCDF	OPAR	6.7	7.3	_	dB

^{2.} Performance in MACOM Production Test Fixture

DC Electrical Characteristics: T_A = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage	$V_{GS} = -8 \text{ V}, I_{D} = 10 \text{ mA}$	$V_{BR(DSS)}$	150	_	_	V
Drain-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 10 V	i _{DSS}	_	_	5.1	mA
Gate Threshold Voltage	V _{DS} = 10 V, I _D = 32 mA	V _{GS(th)}	-3.8	-2.6	-2.1	V

Recommended Operating Voltages

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Drain Operating Voltage	_	V_{DD}	0	_	50	V
Gate Quiescent Voltage	V _{DS} = 48 V, I _D = 320 mA	$V_{GS(Q)}$	-3.8	-2.9	-2.3	V

Absolute Maximum Ratings^{3,4,5}

Parameter	Absolute Maximum		
Drain Source Voltage	125 V		
Gate Source Voltage	-10 V to +2 V		
Operating Voltage	55 V		
Gate Current	32 mA		
Drain Current	12 A		
Junction Temperature	+275°C		
Storage Temperature	-65°C to +150°C		

^{3.} Exceeding any one or combination of these limits may cause permanent damage to this device.

^{4.} MACOM does not recommend sustained operation near these survivability limits.

^{5.} Product's qualification were performed @ +225°C. Operation @ T_J (+275°C) reduces median time to failure.

GTVB222611FAV1A

Rev. V1

Thermal Characteristics

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Thermal Resistance (R _{BJC})	T _C = +85°C, 96 W DC	°C/W		1.2	

Bias Sequencing

Bias ON

- 1. Ensure RF is turned off
- 2. Apply pinch-off voltage of -5 V to the gate
- 3. Apply nominal drain voltage
- 4. Bias gate to desired quiescent drain current
- 5. Apply RF

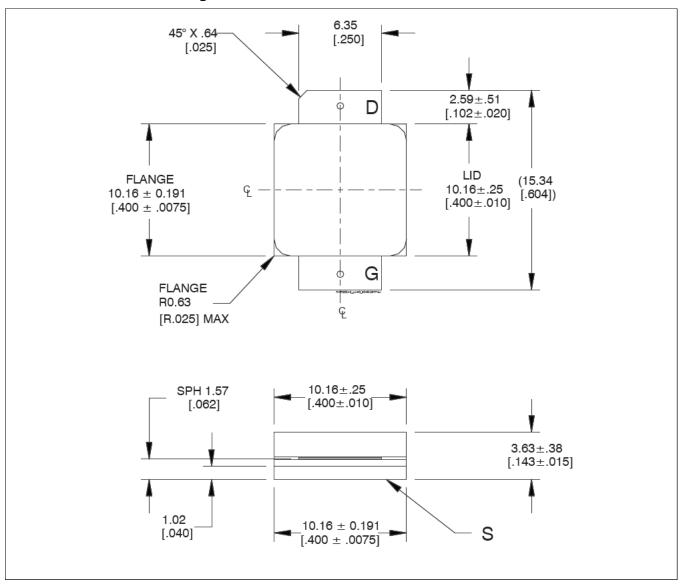
Bias OFF

- 1. Turn RF off
- 2. Apply pinch-off voltage to the gate
- 3. Turn-off drain voltage
- 4. Turn-off gate voltage

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity


These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

GTVB222611FAV1A

Rev. V1

Lead-Free Outline Drawing H-87265J-2

Meets JEDEC moisture sensitivity level (MSL) 3 requirements. Plating is \mbox{Au}

GTVB222611FAV1A

Rev. V

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.