

GTVA126001EC/FC

Thermally-Enhanced High Power RF GaN HEMT 600 W, 50 V, DC – 1.4 GHz

Description

The GTVA126001EC and GTVA126001FC are 600 W GaN on SiC high electron mobility transistors (HEMT) for use in the DC to 1400 MHz frequecy band. They feature input matching, high efficiency, and thermally-enhanced packages.

Package Types: H-37248-2 PN's: GTVA126001FC

Features

- GaN on SiC HEMT technology
- Input matched
- Typical pulsed CW performance (class AB), 1200 MHz, 50 V, 300 μs pulse width, 10% duty cycle
 - Output power P_{3dB} = 600 W
 - Drain efficiency = 65%
 - Gain = 18 dB
- Capable of withstanding a 10:1 load mismatch (all phase angles) at 600 W peak power under pulse conditions: 300 μ s pulse width, 10% duty cycle, $V_{DD} = 50 \text{ V}$, $I_{DO} = 100 \text{ mA}$
- Human body model class 1 C (per ANSI/ESDA/JEDEC JS-001)
- Pb-free and RoHS compliant

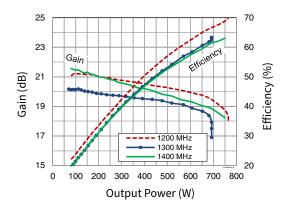


Figure 1. Power Sweep: Gain & Efficiency 50 V, I_{DQ}=100 mA, 300 μs Pulse Width, 10% Duty Cycle

RF Characteristics

Pulsed RF performance (tested in the test fixture)

 V_{DD} = 50 V, I_{DO} = 100 mA, P_{OUT} = 600 W, f = 1400 MHz, 300 μs pulse width, 10% duty cycle

Characteristic	Symbol	Min.	Тур.	Max.	Unit
Gain	G_{ps}	19	20	22	dB
Drain Efficiency	$\eta_{\scriptscriptstyle D}$	56	63	-	%

All published data at T_{CASE} = 25 °C unless otherwise indicated

Note

ESD: Electrostatic discharge sensitive device—observe handling precautions!

DC Characteristics

Characteristics	Conditions	Symbol	Min.	Тур.	Max.	Unit
Drain-Source Breakdown Voltage	$V_{GS} = -8 \text{ V, } I_{D} = 10 \text{ mA}$	V _{(BR)DSS}	150	-	-	V
Drain-Source Leakage Current	$V_{GS} = -8 \text{ V}, V_{DS} = 50 \text{ V}$	I _{DSS}	-	-	12	mA
Gate Threshold Voltage	$V_{DS} = 10 \text{ V, } I_{D} = 85 \text{ mA}$	$V_{\rm GS(th)}$	-3.8	-3.0	-2.3	V

Recommended Operating Conditions

Parameter	Conditions	Symbol	Min.	Тур.	Max.	Unit
Drain Operating Voltage		V _{DD}	0	-	50	V
Gate Quiescent Voltage	$V_{DS} = 50 \text{ V}, I_{D} = 100 \text{ mA}$	$V_{GS(Q)}$	-4.3	-3.2	-2.4	V

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-Source Voltage	$V_{\scriptscriptstyle DSS}$	125	V
Gate-Source Voltage	V _{GS}	-10 to +2	V
Gate Current	I _G	100	mA
Drain Current	I _D	10	A
Junction Temperature	T _J	225	°C
Storage Temperature Range	T _{STG}	-65 to +150	°C

Operation above the maximum values listed here may cause permanent damage. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the component. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For reliable continuous operation, the device should be operated within the operating voltage range (V_{DD}) specified above.

Thermal Characteristics

Characteristics	Symbol	Value	Unit	
Thermal Resistance ¹	$R_{ hetaJC}$	0.28	°C/W	
Thermal Resistance ²	R _{eJC}	0.42	°C/W	

Notes:

Ordering Information

Type and Version	Order Code	Package and Description	Shipping
GTVA126001EC V1 R0	GTVA126001EC-V1-R0	H-36248-2, Single-Ended, Bolt-Down Flange	Tape & Reel, 50 pcs
GTVA126001EC V1 R2	GTVA126001EC-V1-R2	H-36248-2, Single-Ended, Bolt-Down Flange	Tape & Reel, 250 pcs
GTVA126001FC V1 R0	GTVA126001FC-V1-R0	H-37248-2, Single-Ended, Earless Flange	Tape & Reel, 50 pcs
GTVA126001FC V1 R2	GTVA126001FC-V1-R2	H-37248-2, Single-Ended, Earless Flange	Tape & Reel, 250 pcs

 $^{^1\,}T_{\text{CASE}}$ = 85 °C, P_{DISS} = 334 W, 500 μs pulse width, 10% duty cycle.

 $^{^2}$ T_{CASE} = 85 °C, P_{DISS} = 333 W, CW.

Typical Performance

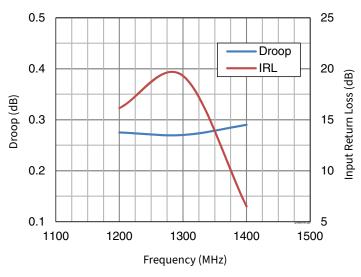


Figure 2. Pulse Droop and IRL V $_{DS}$ = 50 V, I $_{DQ}$ = 100 mA, P $_{OUT}$ @ P $_{3db}$ 300 μs Pulse Width, 10% Duty Cycle

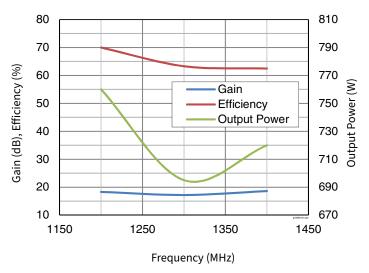


Figure 3. Frequency Sweep V $_{\rm DS}$ = 50 V, I $_{\rm DQ}$ = 100 mA, P $_{\rm OUT}$ @ P $_{\rm 3dB}$ 300 μs Pulse Width, 10% Duty Cycle

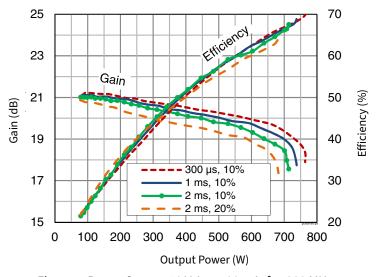
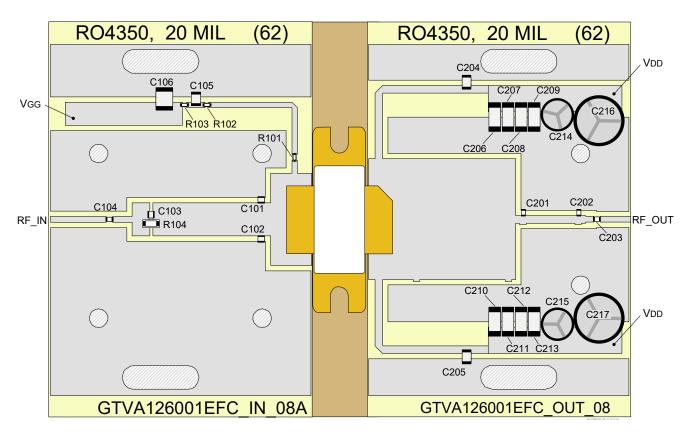


Figure 4. Power Sweep: 50 V, I_{DQ} = 100 mA, f = 1200 MHz

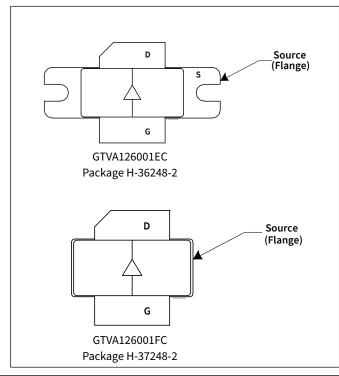

Load Pull Performance

Each side load pull performance –16 μs pulse width, 10% duty cycle, class AB, V_{DD} = 50 V, 60 mA

		Max	Outpu	t Pow	er	Max Efficiency			Z Optimum							
Freq [MHz]	Р _{оит} [dBm]	Р _{оит} [W]	Eff. [%]	Gain [dB]	$Z_{Load} \ [\Omega]$	Р _{оит} [dBm]	Р _{оит} [W]	Eff. [%]	Gain [dB]	$Z_{Load} \ [\Omega]$	Р _{оит} [dBm]	Р _{оит} [W]	Eff. [%]	Gain [dB]	$Z_{Load} \ [\Omega]$	$Z_{Source} [\Omega]$
1200	59.20	832	66.29	19.34	1.54 + j0.11	58.12	649	75.83	20.09	2.19 + j0.97	59.09	811	70.51	19.79	1.68 + j0.33	1.00 – j1.73
1300	58.62	728	59.62	18.89	1.12 + j0.12	57.56	570	71.85	20.53	1.54 + j0.94	58.41	693	67.11	19.98	1.22 + j0.44	4.43 – j1.20
1400	58.55	716	59.68	19.65	1.00 + j0.21	57.35	543	70.39	20.18	1.38 + j0.85	58.27	671	65.89	20.23	1.15 + j0.45	2.35 + j0.66

Reference Circuit Tuned for DC - 1.4 GHz

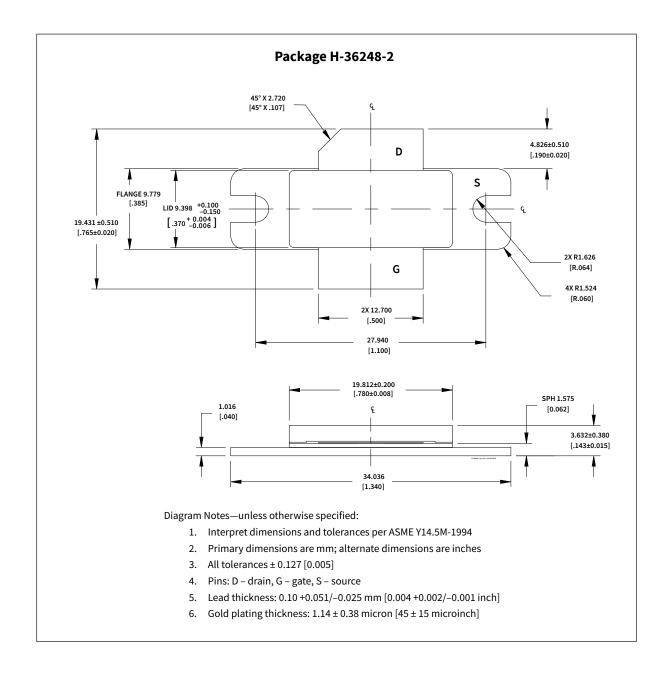
DUT	GTVA126001EC/FC V1
Test Fixture Part No.	LTN/GTVA126001EC V1, LTN/GTVA126001FC V1
PCB	Rogers 4350, 0.508 mm [.020"] Thick, 2 oz. Copper, $\epsilon_{\rm r}$ = 3.66


Reference circuit assembly diagram (not to scale)

Reference Circuit (Cont.)

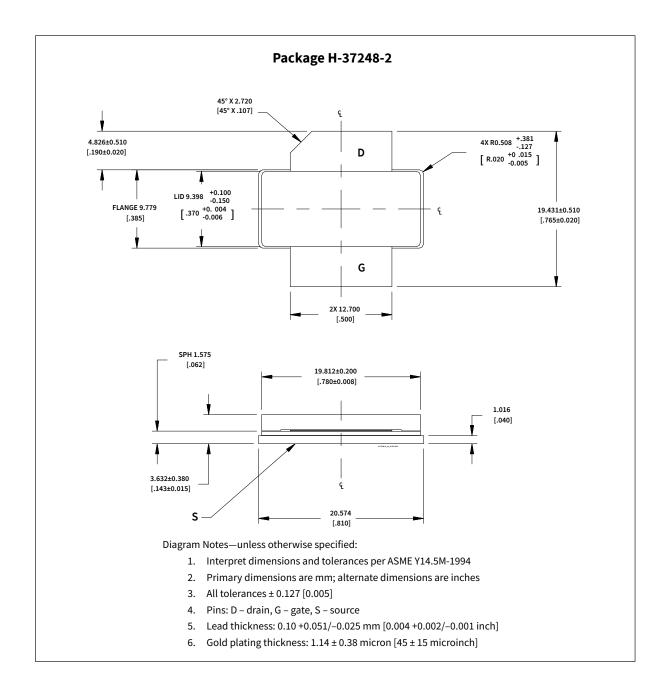
Components Information						
Component	Description	Manufacturer	P/N			
Input						
C101, C102	Capacitor, 1.2 pF	ATC	ATC800A1R2CT250T			
C103, C104	Capacitor, 56 pF	ATC	ATC800A560JT250T			
C105	Capacitor, 39 pF	ATC	ATC100B390JW500XB			
C106	Capacitor, 1 μF	TDK Corporation	C4532X7R2A105M230KA			
R101	Resistor, 10 ohms	Panasonic Electronic Components	ERJ-3GEYJ100V			
R102	Resistor, 100 ohms	Panasonic Electronic Components	ERJ-3GEYJ101V			
R103	Resistor, 5.6 ohms	Panasonic Electronic Components	ERJ-8RQJ5R6V			
R104	Resistor, 30 ohms	Panasonic Electronic Components	ERJ-8GEYJ300V			
Output						
C201	Capacitor, 1.6 pF	ATC	ATC800A1R6CT250T			
C202	Capacitor, 3.6 pF	ATC	ATC100A3R6CW150XB			
C203	Capacitor, 56 pF	ATC	ATC800A560JT250T			
C204, C205	Capacitor, 39 pF	ATC	ATC100B390JW500XB			
C206, C207, C208, C209, C210, C211, C212, C213	Capacitor, 10 μF, 100 V	TDK Corporation	C5750X7S2A106M230KB			
C214, C215	Capacitor, 22 μF	Cornell Dubilier Electronics (CDE)	SEK220M100ST			
C216, C217	Capacitor, 220 μF	Panasonic Electronic Components	ECA-2AHG221			

Pinout Diagrams (Top View)



Pin	Description
D	Drain
G	Gate
S	Source (Flange)

Pin	Description
D	Drain
G	Gate
S	Source (Flange)



Package Outline Specifications

Package Outline Specifications (Cont.)

Revision History

Revision	Date	Data Sheet	Page	Subjects (Major Changes at Each Revision)
01	2016-09-27	Advance	All	Proposed Specification for New Product Development
02	2017-07-10	Advance	All	Includes GTVA126001FC Product, Package H-37248-4
03	2017-11-17	Preliminary	All	Add Preliminary Performance Information and Circuit Specifications
04	2018-05-01	Preliminary	All	Converted to the Data Sheet
05	2019-02-06	Production	All	Information for Production-Released Device, Including Firm Specifications, Operating Conditions and Performance, and Reference Circuit Specifications
05-с	2019-06-21	Production	2	Edited Thermal Characteristics Note for ¹ T _{CASE} and ² T _{CASE}
06	2020-03-10	Production	All	Updated Frequency Range
06.1	2023-09-29	Production	All	Removed branding

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.