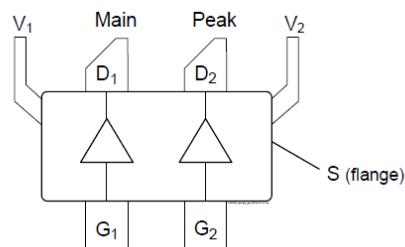


Features

- GaN on SiC HEMT Technology
- Designed for Asymmetrical Doherty Application
- 47.5 dBm Average Output Power
- 450 W Peak Output Power
- Input and Output Pre-matched Device
- Low Thermal Resistance
- 100% DC and RF Tested
- RoHS* Compliant

Applications

- Infrastructure


Description

The GTRB424908FC is a GaN on Silicon Carbide HEMT Amplifier designed for use in multi-standard cellular power amplifier applications. The device is optimized for the frequency band of 3700 to 4000 MHz. Product features high efficiency, and a thermally-enhanced package with earless flange.

H-37248KC-6/2

Functional Schematic

Typical Doherty Performance:

$V_{DS} = 48$ V, $I_{DQm} = 250$ mA, $V_{GSpk} = -5$ V, $P_{OUT} = 47.5$ dBm, $T_A = 25^\circ\text{C}$

Note: Performance in MACOM Doherty Application Fixture. Single Carrier- W-CDMA Channel Bandwidth 3.84 MHz, PAR 10 dB @ 0.01% CCDF.

Frequency (MHz)	Gain (dB)	Efficiency (%)	Output PAR (dB)	ACPR (dBc)
3700	12.4	42.4	8.2	-33.7
3800	12.7	40.4	8.5	-38.0
3900	12.8	40.7	8.6	-35.8
4000	12.4	41.7	8.5	-32.5

Ordering Information

Part Number	Package
GTRB424908FC-V1-R2	250 pc Tape and Reel ¹
GTRB424908FC-V1-R0	50 pc Tape and Reel ¹
LTAGTRB424908FC-E4	Sample Board

1. See application note AN-0004525 for Tape & Reel information.

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

1

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

RF Electrical Characterization:

$T_A = 25^\circ\text{C}$, $V_{DS} = 48 \text{ V}$, $I_{DQm} = 250 \text{ mA}$, $V_{GSpk} = -5 \text{ V}$

Note: Performance in MACOM Doherty Application Fixture. Single Carrier- W-CDMA Channel Bandwidth 3.84 MHz, PAR 10 dB @ 0.01% CCDF.

Parameter	Test Conditions	Symbol	Min.	Typ.	Max.	Units
Power Gain	4000 MHz, $P_{OUT} = 47.5 \text{ dBm}$	G_p	—	12.4	—	dB
Drain Efficiency	4000 MHz, $P_{OUT} = 47.5 \text{ dBm}$	η	—	41.7	—	%
Output CCDF @ 0.01%	4000 MHz, $P_{OUT} = 47.5 \text{ dBm}$	PAR	—	8.5	—	dB
Adjacent Channel Power	4000 MHz, $P_{OUT} = 47.5 \text{ dBm}$	ACP	—	-32.5	—	dBc
Input Return Loss	4000 MHz, $P_{OUT} = 47.5 \text{ dBm}$	IRL	—	-13.3	—	dB
Gain Flatness	4000 MHz, $P_{OUT} = 47.5 \text{ dBm}$	G_F	—	0.01	—	dB

RF Electrical Test Specifications:

$P_{OUT} = 47.5 \text{ dBm}$, $T_A = 25^\circ\text{C}$, $V_{DS} = 48 \text{ V}$, $I_{DQm} = 250 \text{ mA}$, $V_{GSpk} = -5 \text{ V}$

Note: Performance in MACOM Doherty Production Test Fixture. Single Carrier- W-CDMA Channel Bandwidth 3.84 MHz, PAR 10 dB @ 0.01% CCDF.

Parameter	Symbol	Frequency	Min.	Typ.	Max.	Units
Power Gain	G_p	4000 MHz	11.0	12.0	—	dB
Drain Efficiency	η	4000 MHz	35.0	42.0	—	%
Output CCDF @ 0.01%	PAR	4000 MHz	7.2	8.0	—	dB
Adjacent Channel Power	ACP	4000 MHz	—	-25.0	-20.0	dBc

DC Electrical Characteristics $T_A = 25^\circ\text{C}$

Parameter	Test Conditions	Symbol	Min.	Typ.	Max.	Units
Main Amplifier						
Drain-Source Leakage Current	$V_{GS} = -8 \text{ V}$, $V_{DS} = 10 \text{ V}$	I_{DLK}	—	—	4.4	mA
Gate-Source Leakage Current	$V_{GS} = -8 \text{ V}$, $V_{DS} = 50 \text{ V}$	I_{GLK}	-6.9	-	-	mA
Gate Threshold Voltage	$V_{DS} = 10 \text{ V}$, $I_D = 250 \text{ mA}$	V_T	-3.8	-3.1	-2.3	V
Peak Amplifier						
Drain-Source Leakage Current	$V_{GS} = -8 \text{ V}$, $V_{DS} = 10 \text{ V}$	I_{DLK}	—	—	6.3	mA
Gate-Source Leakage Current	$V_{GS} = -8 \text{ V}$, $V_{DS} = 50 \text{ V}$	I_{GLK}	-9.9	-	-	mA
Gate Threshold Voltage	$V_{DS} = 10 \text{ V}$, $I_D = 360 \text{ mA}$	V_T	-3.8	-3.1	-2.3	V

Recommended Operating Voltages

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Drain Operating Voltage	—	V	—	50	—
Gate Quiescent Voltage	$V_{DS} = 48 \text{ V}$, $I_D = 250 \text{ mA}$	V	-3.6	-2.9	-2.1

Moisture Sensitivity Level

Level	Test Standard	Package Temperature	Unit
3	IPC/JEDEC J-STD-020	260	°C

Absolute Maximum Ratings^{3,4,5,6,7}

Parameter	Absolute Maximum
Drain Source Voltage, V_{DS}	125 V
Operating Voltage, V_{DS}	55 V
Gate Source Voltage, V_{GS}	-10 to 2 V
Gate Current (Main), I_G	25 mA
Gate Current (Peak), I_G	36 mA
Storage Temperature Range	-65°C to +150°C
Absolute Maximum Channel Temperature	+225°C

3. Exceeding any one or combination of these limits may cause permanent damage to this device.
4. MACOM does not recommend sustained operation above maximum operating conditions.
5. Operating at drain source voltage $V_{DS} < 55V$ will ensure $MTTF > 2.51 \times 10^6$ hours.
6. Operating at nominal conditions with $T_{CH} \leq 225^{\circ}\text{C}$ will ensure $MTTF > 2.51 \times 10^6$ hours.
7. $MTTF$ may be estimated by the expression $MTTF \text{ (hours)} = A e^{[B + C/(T+273)]}$ where T is the channel temperature in degrees Celsius., $A = 1.93$, $B = -45.31$, and $C = 29,585$.

Thermal Characteristics⁸

Parameter	Test Conditions	Symbol	Typical	Units
Thermal Resistance (main) using Finite Element Analysis, T_J	$P_{DISS} = 100 \text{ W}$, $T_C = 85^{\circ}\text{C}$, $T_{CH} = 225^{\circ}\text{C}$	R_{Θ}	1.4	°C/W
Thermal Resistance (peak) using Finite Element Analysis, T_J	$P_{DISS} = 134 \text{ W}$, $T_C = 85^{\circ}\text{C}$, $T_{CH} = 225^{\circ}\text{C}$	R_{Θ}	1.05	°C/W

8. Case temperature measured using thermocouple embedded in heat-sink. Contact local applications support team for more details on this measurement.

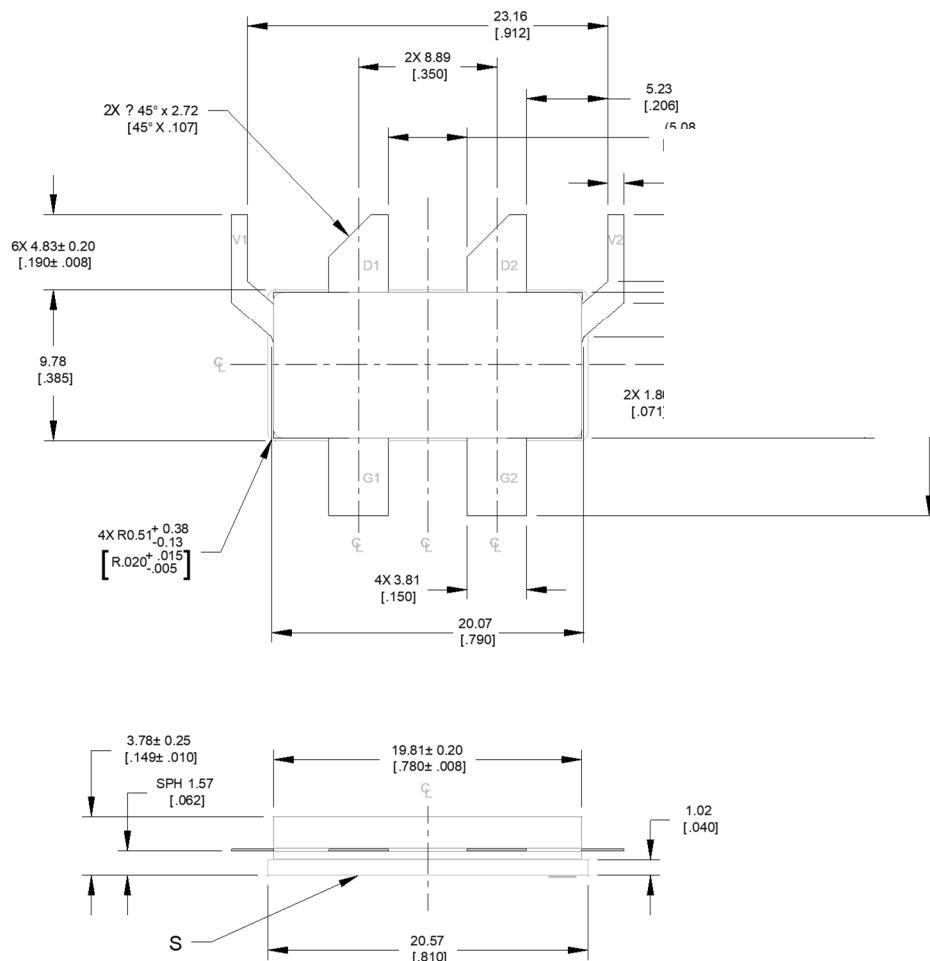
Bias Sequencing

Bias ON

1. Ensure RF is turned off
2. Apply pinch-off voltage of -5 V to the gate
3. Apply nominal drain voltage
4. Bias gate to desired quiescent drain current
5. Apply RF

Bias OFF

1. Turn RF off
2. Apply pinch-off voltage to the gate
3. Turn-off drain voltage
4. Turn-off gate voltage


Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

H-37248KC-6/2 Package Dimensions

Diagram Notes – unless otherwise specified

1. Interpret dimensions and tolerance per ASME Y14.5M-1994
2. Primary dimensions are mm; alternate dimensions are inches
3. All tolerances ± 0.127 [0.005]
4. Pins: D1, D2 – drain, G1, G2 – gate, V1, V2 – drain video decoupling and no DC bias, S – source (flange)
5. Lead thickness: 0.127 + 0.05/ -0.025 [0.005 + .002/ -.001]
6. Gold plating thickness: 1.14 ± 0.38 micron [45 ± 15 microinch]

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.