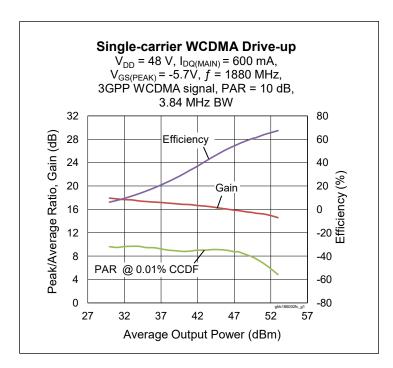


GTRB186002FC


Thermally-Enhanced High Power RF GaN on SiC Amplifier, 500 W, 48 V, 1805 – 1880 MHz

Description

The GTRB186002FC is a 500-watt (P3dB) GaN on SiC HEMT D-mode amplifier designed for use in multi-standard cellular power amplifier applications. It features high efficiency, and a thermally-enhanced package with earless flange.

GTRB186002FC Package H-37248C-4

Features

- GaN on SiC HEMT technology
- Typical Pulsed CW performance, 1880 MHz, 48 V, 10 μs pulse width, 10% duty cycle, combined outputs
 - Output power at P_{3dB} = 500 W
 - Efficiency at P_{3dB} = 68%
- Human Body Model Class 1B (per ANSI/ESDA/JEDEC JS-001)
- Pb-free and RoHS compliant

Typical RF Performance

Single-carrier WCDMA Specifications (tested in the Doherty production test circuit, LTA/GTRB186002FC-V1, 1805-1880 MHz) $V_{DD} = 48 \text{ V}, I_{DQ} = 600 \text{ mA}, P_{OUT} = 81 \text{ W avg}, V_{GS(peak)} = V_{GS} \text{ at } I_{DQ(peak)} = 600 \text{ mA} - 2.5 \text{ V}, channel bandwidth} = 3.84 \text{ MHz}, peak/average} = 1.0 \text{ mHz}$ 10 dB @ 0.01% CCDF

	P _{OUT} (dBM)	Gain (dB)	Efficiency (%)	ACPR + (dBc)	ACPR – (dBc)	OPAR (dB)
1805 MHz	49.1	16.1	59.9	-27.2	-26.9	8.2
1842 MHz	49.1	15.9	60.3	-29.3	-29.2	8.3
1880 MHz	49.1	15.5	59.7	-31.9	-31.7	8

All published data at T_{CASE} = 25°C unless otherwise indicated ESD: Electrostatic discharge sensitive device—observe handling precautions!

DC Characteristics

Characteristics	Conditions	Symbol	Min	Тур	Max	Unit
Drain-source Breakdown Voltage (main)	$V_{GS} = -8 \text{ V}, I_D = 10 \text{ mA}$	$V_{(BR)DSS}$	150	_	_	V
(peak)	$V_{GS} = -8 \text{ V}, I_D = 10 \text{ mA}$	$V_{(BR)DSS}$	150	_	_	V
Drain-source Leakage Current (main)	$V_{GS} = -8 \text{ V}, V_{DS} = 10 \text{ V}$	I _{DSS}	_	_	4.4	mA
(peak)	$V_{GS} = -8 \text{ V}, V_{DS} = 10 \text{ V}$	I _{DSS}	_	_	8.8	mA
Gate-Source Leakage Current (main)	$V_{GS} = -8 \text{ V}, V_{DD} = 50 \text{ V}$	I_{GSX}	_	_	-7.0	mA
(peak)	$V_{GS} = -8 \text{ V}, V_{DD} = 50 \text{ V}$	I_{GSX}	_	_	-15.0	mA
Gate Threshold Voltage (main)	$V_{DS} = 10 \text{ V}, I_D = 25 \text{ mA}$	V _{GS(th)}	-3.8	-3.05	-2.3	V
(peak)	$V_{DS} = 10 \text{ V}, I_{D} = 50 \text{ mA}$	$V_{GS(th)}$	-3.8	-3.05	-2.3	٧

Recommended Operating Conditions

Parameter Conditions		Symbol	Min	Тур	Max	Unit
Operating Voltage		V_{DD}	0	_	50	V
Gate Quiescent Voltage (main)	$V_{DS} = 48 \text{ V}, I_D = 600 \text{ mA}$	$V_{GS(Q)}$	-3.5	-2.8	-2.0	V

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-source Voltage	V_{DSS}	125	V
Gate-source Voltage	V_{GS}	-10 to +2	V
Operating Voltage	V_{DD}	55	V
Gate Current (main)	I _G	25	mA
(peak)	I_{G}	50	mA
Drain Current (main)	I _D	9.5	А
(peak)	I_{D}	19	Α
Junction Temperature	TJ	275	°C
Storage Temperature Range	T _{STG}	-65 to +150	°C

^{1.} Operation above the maximum values listed here may cause permanent damage. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the component. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For reliable continuous operation, the device should be operated within the operating voltage range (V_{DD}) specified above.

Thermal Characteristics

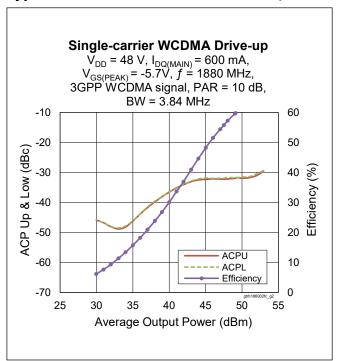
Characteristics	Symbol	Value	Unit
Thermal Resistance (main, T _{CASE} = 85 °C, P _{DISS} = 100 W DC)	$R_{ heta JC}$	1.4	°C/W
(peak, T _{CASE} = 85 °C, P _{DISS} = 143 W DC)	$R_{ hetaJC}$	1.0	°C/W

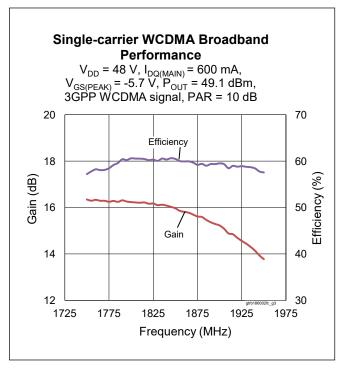
^{2.} Product's qualification were performed at 225 °C. Operation at T_J (275 °C) reduces median time to failure.

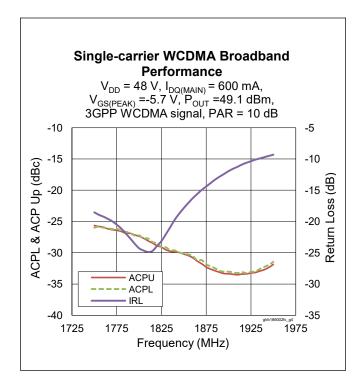
RF Characteristics

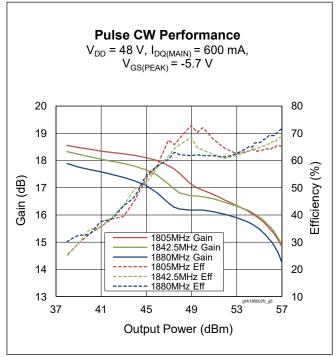
Single-carrier WCDMA Specifications (tested in the Doherty production test fixture, LTA/GTRB186002FC-V1)

 $V_{DD} = 48 \text{ V}, I_{DQ} = 600 \text{ mA}, P_{OUT} = 81.2 \text{ W avg}, V_{GS(peak)} = V_{GS} \text{ at } I_{DQ(peak)} = 600 \text{ mA} - 2.5 \text{ V}, f = 1880 \text{ MHz}, 3GPP \text{ signal, channel bandwidth} = 3.84 \text{ MHz}, peak/average} = 10 \text{ dB} @ 0.01\% \text{ CCDF}$

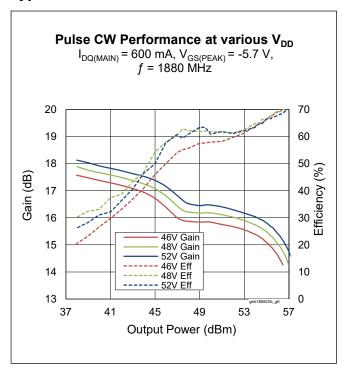

Characteristics	Symbol	Min	Тур	Мах	Unit
Gain	G_{ps}	14.7	15.7	_	dB
Drain Efficiency	ηD	50	54	_	%
Adjacent Channel Power Ratio	ACPR	_	-31.2	-27.5	dBc
Output PAR @ 0.01% CCDF	OPAR	7.3	7.9	_	dB

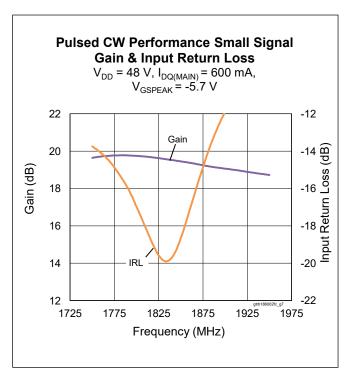

Ordering Information


Type and Version	ype and Version Order Code		Shipping
GTRB186002FC V1 R0	GTRB186002FC-V1-R0	H-37248C-4	Tape & Reel, 50 pcs
GTRB186002FC V1 R2	GTRB186002FC-V1-R2	H-37248C-4	Tape & Reel, 250 pcs



Typical Performance (data taken in the Doherty evaluation board, LTA/GTRB186002FC-V1)



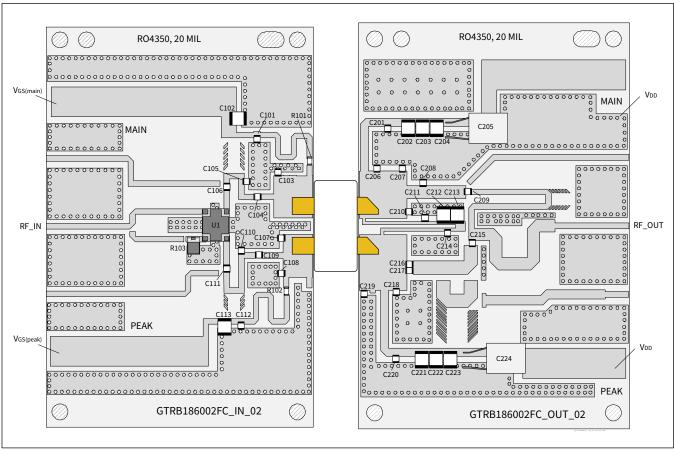


Typical Performance (cont.)

Load Pull Performance

Main Side Load Pull Performance – Pulsed CW signal – 160 μ sec, 10% duty cycle, 48 V, I_{DQ} = 200 mA, class AB

			P _{3dB}										
		Max Output Power					Max Dr	ain Efficie	ncy				
Freq [MHz]	$\mathbf{Z}\mathbf{s}$ $[\Omega]$	z ι [Ω]	Gain [dB]	P _{3dB} [dBm]	P _{3dB} [W]	η D [%]	z ι [Ω]	Gain [dB]	P _{3dB} [dBm]	P _{3dB} [W]	η D [%]		
1805	3.6-j8.49	3.26-j3.42	17.73	54.95	312.61	75.19	2.48-j0.96	19.66	53.54	225.94	88.13		
1840	3.5-j8.7	2.46-j3.04	18.07	55.04	319.15	75.22	2.89-j0.98	19.7	53.41	219.28	87.95		
1880	4.1-j9.89	2.84-j3.36	18.19	54.94	311.89	76.75	2.73-j1.39	19.87	53.49	223.36	88.9		


Peak Side Load Pull Performance – Pulsed CW signal – 160 μ sec, 10% duty cycle, 48 V, V_{GSPK} = –5 V, class C

		P _{3dB}									
		Max Output Power					Max Dr	ain Efficie	ncy		
Freq [MHz]	$\mathbf{Z}\mathbf{s}$ $[\Omega]$	z ι [Ω]	Gain [dB]	P _{3dB} [dBm]	P _{3dB} [W]	η D [%]	z ι [Ω]	Gain [dB]	P _{3dB} [dBm]	P _{3dB} [W]	η D [%]
1805	2.13-6.67j	1.67-4.84j	13.92	56.91	490.91	67.06	2.39-3.20j	14.31	55.52	356.45	82.16
1840	2.5-7.79j	1.74-4.90j	14.03	56.84	483.06	70.54	1.81-3.08j	14.43	54.86	306.2	83.08
1880	3.47-9.41j	1.84-5.21j	13.32	56.77	475.34	69.38	1.7-3.32j	13.68	54.44	277.97	80.08

Reference circuit, 1805 - 1880 MHz

DUT	GTRB186002FC-V1
Test Fixture Part No.	LTA/GTRB186002FC-V1
PCB	Rogers 4350, 0.508 mm [0.020"] thick, 2 oz. copper, $\varepsilon_{\rm r}$ = 3.66

Reference circuit assembly diagram (not to scale)

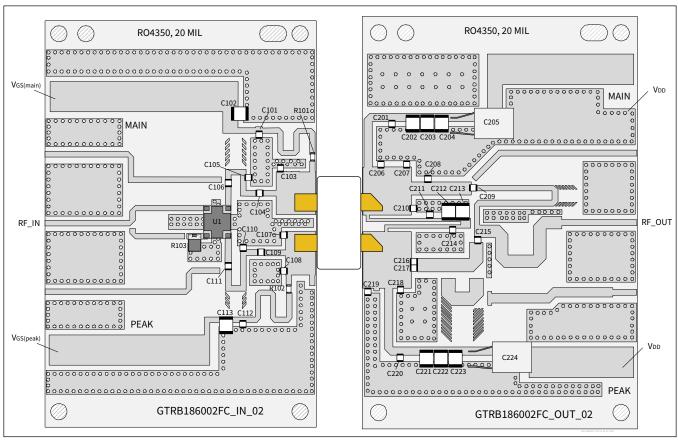
Reference circuit (cont.)

Components Information

Component	Description	Manufacturer	P/N
Input			
C101, C104, C106, C108	Capacitor, 15 pF	ATC	ATC600F150JT250XT
C102, C109	Capacitor, 100 V, 10 μF	Murata Electronics	GRM32EC72A106KE05L
C103	Capacitor, 1.8 pF	ATC	ATC600F1R8BT250XT
C105	Capacitor, 1.5 pF	ATC	ATC600F1R5BT250XT
C107	Capacitor, 2.7 pF	ATC	ATC600F2R7BT250XT
R101, R102	Resistor, 9.1 ohms	Panasonic Electronic Components	ERJ-3GEYJ9R1V
R103	Resistor, 50 ohms	Richardson	C8A50Z4B
U1	Hybrid Coupler	Anaren	X3C19P1-03S
Output			
C201, C210, C212, C215, C216, C221	Capacitor, 15 pF	ATC	ATC600F150JT250XT
C202, C203, C204, C213, C214, C222, C223, C224	Capacitor, 100 V, 10 μF	Murata Electronics	GRM32EC72A106KE05L
C205, C225	Capacitor, 100 V, 470 μF	Panasonic Electronic Components	ECA-2AHG471B
C206	Capacitor, 1.6 pF	ATC	ATC600F1R6BT250XT
C207, C211	Capacitor, 1 pF	ATC	ATC600F1R0BT250XT
C208	Capacitor, 0.5 pF	ATC	ATC600F0R5BT250XT
C209	Capacitor, 1.5 pF	ATC	ATC600F1R5BT250XT
C217, C218	Capacitor, 6.2 pF	ATC	ATC600F6R2BT250XT
C219	Capacitor, 2 pF	ATC	ATC600F2R0BT250XT
C220	Capacitor, 2.4 pF	ATC	ATC600F2R4BT250XT

RF Characteristics (Not tested in production, characterized in application circuit, LTA/GTRB186002FC-E2)

Single-carrier WCDMA Specifications


 $V_{DD} = 51 \text{ V}, I_{DQ} = 400 \text{ mA}, P_{OUT} = 115 \text{ W}, V_{GS(peak)} = V_{GS} \text{ at } I_{DQ(peak)} = 400 \text{ mA} - 2.4 \text{ V}, f = 1880 \text{ MHz}, channel bandwidth} = 3.84 \text{ MHz}, peak/average} = 10 \text{ dB} @ 0.01\% \text{ CCDF}$

Characteristics	Symbol	Min ¹	Тур	Max ¹	Unit
Gain	G _{ps}	14.8	15.8	_	dB
Adjacent Channel Power Ratio	ACPR	_	-29.5	-25.8	dB
Drain Efficiency	ηD	50	56	_	%
Output PAR @ 0.01% CCDF	OPAR	7.3	7.95	_	dB

Notes:

Application circuit, 1805 - 1880 MHz

DUT	GTRB186002FC-V1	
Test Fixture Part No.	LTA/GTRB186002FC-E2	
PCB Rogers 4350, 0.508 mm [0.020"] thick, 2 oz. copper, $\varepsilon_r = 3.66$		

Reference circuit assembly diagram (not to scale)

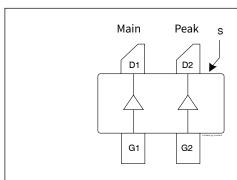
¹ Minimum and maximum specifications are derived by applying the statistical spread from typical production data measured in a production fixture to the typical data as measured in the applications circuit.

Application circuit (cont.)

Components Information

Component	Description	Manufacturer	P/N	
Input				
C101, C104, C106, C109, C111, C112	Capacitor, 15 pF	ATC	ATC600F150JT250XT	
C102, C113	Capacitor, 100 V, 10 μF Murata Electronics		GRM32EC72A106KE05L	
C103, C105, C107	Capacitor, 1.5 pF ATC		ATC600F1R5BT250XT	
C108	Capacitor, 2.4 pF	ATC	ATC600F2R4BT250XT	
C110	Capacitor, 0.2 pF ATC		ATC600F0R2BT250XT	
R101, R102	Resistor, 9.1 ohms	Panasonic Electronic Components	ERJ-3GEYJ9R1V	
R103	Resistor, 50 ohms Richardson		C8A50Z4B	
U1 Hybrid Coupler		Anaren	X3C19P1-03S	
Output				
C201, C209, C211, C214, C215, C220	Capacitor, 15 pF	ATC	ATC600F150JT250XT	
C202, C203, C204, C212, C213, C221, C222, C223	Capacitor, 100 V, 10 μF	Murata Electronics	GRM32EC72A106KE05L	
C205, C224	Capacitor, 100 V, 470 μF	Panasonic Electronic Components	ECA-2AHG471B	
C206	Capacitor, 1.6 pF	ATC	ATC600F1R6BT250XT	
C207, C210	Capacitor, 1 pF	ATC	ATC600F1R0BT250XT	
C208	Capacitor, 1.5 pF	ATC	ATC600F1R5BT250XT	
C216, C217	Capacitor, 6.2 pF ATC		ATC600F6R2BT250XT	
C218	Capacitor, 2 pF	ATC	ATC600F2R0BT250XT	
C219 Capacitor, 2.2 pF		ATC	ATC600F2R2BT250XT	

Bias Sequencing


Bias ON

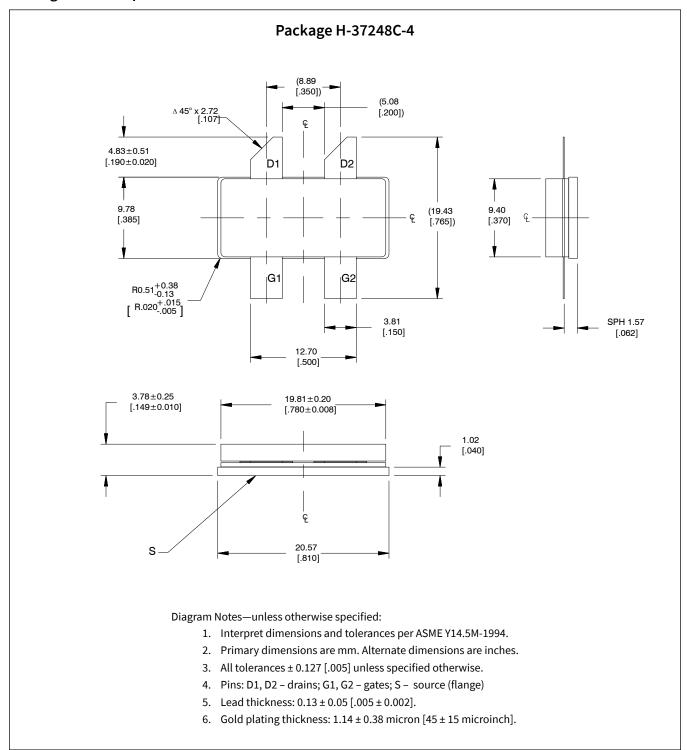
- 1. Ensure RF is turned off
- Apply pinch-off voltage of –5 V to the gate 2.
- Apply nominal drain voltage 3.
- 4. Bias gate to desired quiescent drain current
- 5. Apply RF

Bias OFF

- 1. Turn RF off
- Apply pinch-off voltage to the gate 2.
- 3. Turn-off drain voltage
- 4. Turn-off gate voltage

Pinout Diagram (top view)

Description Pin


- D1 Drain Device 1 (Main) Drain Device 2 (Peak) D2 G1 Gate Device 1 (Main)
- G2 Gate Device 2 (Peak) S Source (flange)

Lead connections for GTRB186002FC

https://www.macom.com/support

Package Outline Specifications

Revision History

Revision	Date	Data Sheet Type	Page	Subjects (major changes since last revision)	
01	2020-07-09	Preliminary	All	Proposed specification for new product development	
02	2021-04-05	Production	2	Change Junction Temperature, add explanation	
03	2021-07-05	Production	All	Data Sheet reflects released product specification	
03.1	2021-07-15	Production	All	Data Sheet reflects released product specification, added Typ RF Performance table, Performance graphs and Reference Circuit	
03.2	2021-09-09	Production	8,9	Added 1C specifications for app circuit, added Application Circuit	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.