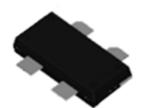


GTRB097152NCV1A

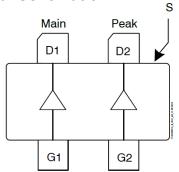
Rev. V1

Features


- GaN on SiC HEMT Technology
- Pulsed CW Performance: 960 MHz, 48 V, 10 μs pulse width, 10% Duty Cycle, Combined Outputs
- Output Power @ P5dB = 820 W
- Efficiency @ P5dB = 68%
- Thermally Enhanced Package
- RoHS* Compliant

Applications

• Cellular Power


Description

The GTRB097152NC is a 820 W (P5dB) GaN on SiC HEMT amplifier for use in multi-standard cellular applications. It features high efficiency, and a thermally-enhanced package with earless flange.

Package Type: PG-HB3SOF-4-1

Functional Schematic

Ordering Information

Part Number	Package
GTRB097152NCV1A-R0	50 piece reel
GTRB097152NCV1A-R2	250 piece reel

Pin Configuration

Pin#	Function
D1	Drain Device 1 (main)
D2	Drain Device 2 (peak)
G1	Gate Device 1 (main)
G2	Gate Device 2 (peak)
S	Source (flange)

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

GTRB097152NCV1A

Rev. V1

RF Characteristics: Single-Carrier WCDMA Specifications¹:

 V_{DD} = 48 V, I_{DQ} = 1000 mÅ, P_{OUT} = 115 W avg., $V_{GS(PEAK)}$ = -4.8 V, T_{C} = 25°C, Channel Bandwidth = 3.84 MHz, Peak/Average = 10 dB @ 0.01% CCDF

Parameter	Frequency Test Conditions (MHz)	Units	Min.	Тур.	Max.
Output Power	925 940 960	dBm	_	50.6	_
Gain	925 940 960	dB	_	18.4 18.2 17.8	_
Efficiency	925 940 960	%	_	61.3 60.5 60.0	
ACPR+	925 940 960	dBc	_	-29.0 -30.8 -32.1	
ACPR-	925 940 960	dBc	_	-28.8 -30.5 -32.1	
OPAR	925 940 960	dB	_	8.3 8.1 8.1	_

^{1.} Measurements taken with the device soldered to a heatsink of the AB application test circuit.

DC Characteristics

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Drain-Source Breakdown Voltage	V _{GS} = -8 V, I _D = 10 mA Main, Peak	V	150	_	_
Drain-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 10 V Main Peak	mA	_	_	5.7 11.5
Gate-Source Leakage Current	V _{GS} = -8 V, V _{DD} = 150 V Main Peak	mA	_	_	11.3 22.6
Gate Threshold Voltage	V_{DS} = 10 V, I_{D} = 33 mA Main V_{DS} = 10 V, I_{D} = 66 mA Peak	V	-3.8	-3.1	-2.3

GTRB097152NCV1A

Rev. V'

Recommended Operating Voltages

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Drain Operating Voltage	_	V	0	_	50
Gate Quiescent Voltage	V _{DS} = 48 V, I _D = 1000 mA	V	-3.8	-2.9	-2.3

Absolute Maximum Ratings^{2,3,4}

Parameter	Absolute Maximum
Drain Source Voltage	125 V
Gate Source Voltage	-10 V to +2 V
Operating Voltage	55 V
Gate Current main Peak	33 mA 66 mA
Drain Current main peak	12 A 24 A
Junction Temperature	+225°C
Storage Temperature	-65°C to +150°C

^{2.} Exceeding any one or combination of these limits may cause permanent damage to this device.

^{3.} MACOM does not recommend sustained operation near these survivability limits.

^{4.} Product's qualification were performed @ +225°C. Operation @ T_J (+275°C) reduces median time to failure.

GTRB097152NCV1A

Rev. V1

Thermal Characteristics

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Thermal Resistance (R _{euc}) main peak	$T_C = +85$ °C, $P_{DISS} = 97.7 \text{ W DC}$ $P_{DISS} = 168.5 \text{ W DC}$	°C/W	_	1.24 0.71	1

RF Functional Test: Single-Carrier WCDMA Specifications⁵:

Freq. = 960 MHz, V_{DD} = 48 V, I_{DQ} = 332 mA, P_{OUT} = 50.6, $V_{GS(PEAK)}$ = -4.8 V, T_{C} = 25°C, 3GPP Signal, Channel Bandwidth = 3.84 MHz, Input PAR = 10 dB @ 0.01% CCDF

Parameter	Units	Min.	Тур.	Max.
Gain	dB	15.6	17.5	_
Efficiency	%	51	58	_
Adjacent Cannel Power Ratio	dBc	_	-26.4	-23.5
Output PAR @ 0.01% CCDF	dB	6.8	7.6	_

^{5.} Measurements taken in the production fixture.

Bias Sequencing

Bias ON

- 1. Ensure RF is turned off
- 2. Apply pinch-off voltage of -5 V to the gate
- 3. Apply nominal drain voltage
- 4. Bias gate to desired quiescent drain current
- 5. Apply RF

Bias OFF

- 1. Turn RF off
- 2. Apply pinch-off voltage to the gate
- 3. Turn-off drain voltage
- 4. Turn-off gate voltage

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1B devices.

GTRB097152NCV1A Rev. V1

Load Pull Performance: Pulsed CW Signal: 160 µs, 10% Duty Cycle

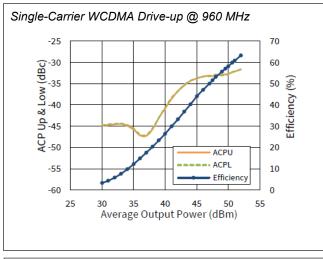
Main Side:

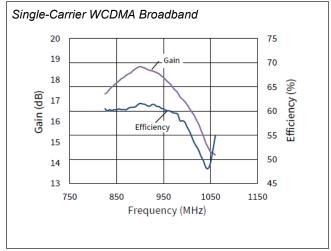
		Maximum Output Power V _{DS} = 48 V, I _{DQ} = 350 mA, T _C = 25°C, P3dB, Class AB				
Frequency (MHz)	Z _{SOURCE} (Ω)	Z _{LOAD} (Ω)	Gain (dB)	Р _{оит} (dВm)	P _{OUT} (W)	η _D (%)
925	4.58 - j5.45	2.87 - j1.54	19.39	56.15	412.10	66.66
940	5.25 - j5.67	2.87 - j1.54	19.30	56.16	413.05	67.42
960	5.81 - j6.45	2.87 - j1.54	19.20	56.04	401.79	67.26

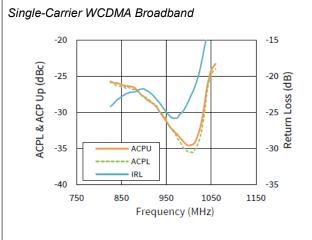
		Maximum Drain Efficiency					
		V _{DS} = 48 V, I _{DQ} = 350 mA, T _C = 25°C, P3dB, Class AB					
Frequency (MHz)	Z_{SOURCE} (Ω)	Z _{LOAD} (Ω)	Gain (dB)	Р _{оит} (dBm)	P _{OUT} (W)	η _D (%)	
925	4.58 - j5.45	3.22 + j2.41	21.45	53.07	202.77	81.46	
940	5.25 - j5.67	3.22 + j2.41	21.37	53.08	203.24	83.13	
960	5.81 - j6.45	3.22 + j2.42	21.34	52.97	198.15	83.60	

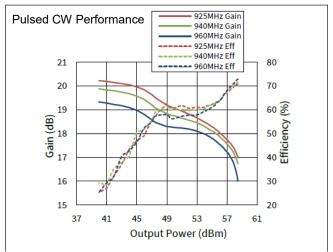
Peak Side:

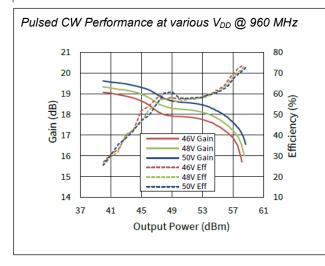
		Maximum Output Power					
		V _{DS} = 48 V, V _{GS} = -5 V, T _C = 25°C, P3dB, Class C					
Frequency (MHz)	Z _{SOURCE} (Ω)	Z_{LOAD} (Ω)	Gain (dB)	Р _{оит} (dBm)	P _{OUT} (W)	η _D (%)	
925	1.59 - j3.51	1.09 - j1.57	15.98	58.32	679.20	62.65	
940	1.76 - j3.44	1.39 - j1.64	15.83	58.33	680.77	68.28	
960	1.25 - j4.00	1.10 - j1.35	16.26	58.33	680.77	69.89	

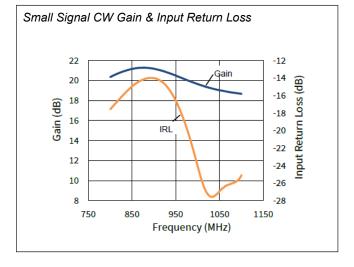

		Maximum Drain Efficiency				
		V _{DS} = 48 V, V _{GS} = -5 V, T _C = 25°C, P3dB, Class C				
Frequency (MHz)	Z_{SOURCE} (Ω)	Z _{LOAD} (Ω)	Gain (dB)	Р _{оит} (dBm)	P _{OUT} (W)	η _D (%)
925	1.59 - j3.51	1.71 + j0.730	16.73	55.11	324.34	85.06
940	1.76 - j3.44	1.99 + j0.635	15.89	55.05	319.89	82.84
960	1.25 - j4.00	1.64 + j0.560	16.53	55.00	316.23	86.53

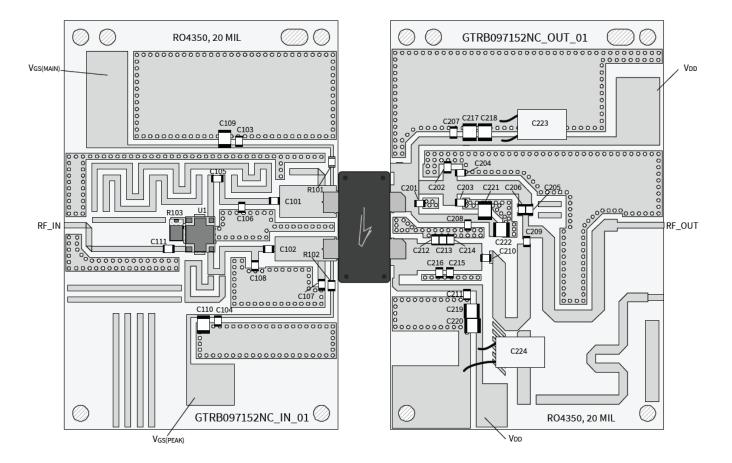



GTRB097152NCV1A


Rev. V1


Typical Performance Curves





6

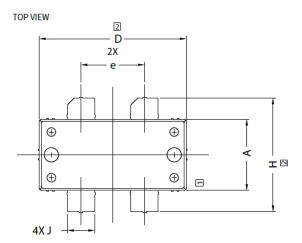
GTRB097152NCV1A Rev. V1

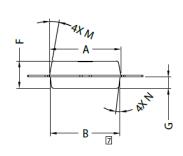
Evaluation Board: 925 - 960 MHz

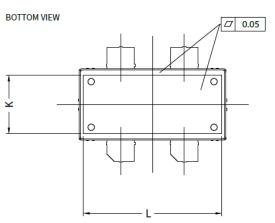
GTRB097152NCV1A

Rev. V1

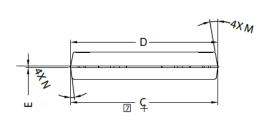
Parts List for Evaluation Board: 925 - 960 MHz


Component	Description	Manufacturer	Manufacturer P/N						
Input									
C101	Capacitor, 39 pF	ATC	ATC600F390JT250XT						
C102, C103, C104, C105, C111	Capacitor, 100 pF	ATC	ATC600F101JT250XT						
C106	Capacitor, 5.6 pF	ATC	ATC600F5R6BT250XT						
C107	Capacitor, 8.2 pF	ATC	ATC600F8R2BT250XT						
C108	Capacitor, 5.6 pF	ATC	ATC600F5R6BT250XT						
C109, C110	Capacitor, 10 μF, 100 V	Murata	GRM32EC72A106KE05L						
R101	Resistor, 5.6 Ω	Panasonic	ERJ-H3ED5601V						
R102	Resistor, 18 Ω	Panasonic	ERJ-PA3F18R0V						
R103	Resistor, 50 Ω	TTM Technologies	C8A50Z4B						
U1	Hybrid Coupler	Anaren	X3C09P1-03S						
Output									
C201, C203	Capacitor, 3.0 pF	ATC	ATC600F3R0BT250XT						
C202	Capacitor, 3.6 pF	ATC	ATC600F3R6BT250XT						
C204	Capacitor, 3.9 pF	ATC	ATC600F3R9BT250XT						
C205, C206	Capacitor, 3.3 pF	ATC	ATC600F3R3BT250XT						
C207, C208, C209	Capacitor, 100 pF	ATC	ATC600F101JT250XT						
C210	Capacitor, 18 pF	ATC	ATC600F180JT250XT						
C211	Capacitor, 51 pF	ATC	ATC600F510JT250XT						
C212	Capacitor, 5.1 pF	ATC	ATC600F5R1BT250XT						
C213, C216	Capacitor, 6.2 pF	ATC	ATC600F6R2BT250XT						
C214	Capacitor, 0.7 pF	ATC	ATC600F0R7BT250XT						
C215	Capacitor, 2.4 pF	ATC	ATC600F2R4BT250XT						
C217, C218, C219, C220, C221, C222			GRM32EC72A106KE05L						
C223, C224	Capacitor, 470 µF, 100 V	Panasonic	ECA-2AHG471B						


GTRB097152NCV1A


Rev. V1

Lead-Free Outline Drawing PG-HB3SOF-4-1



RIGHT SIDE VIEW

- 1. Interpret dimensions and tolerances per ASME Y14.5M-1994.
- Mold/Dam Bar/Metal protrusion of 0.30 mm max per side not included.
- Metal protrusions are connected to source and shall not exceed 0.10 mm max.
- Fillets and radii:- Unless otherwise noted all radii are 0.30 mm max
- 5. Molded package Ra 1.2-1.6 μm.
- 6. All metal surfaces are tin plated, except area of cut.
- 7. Does not include Mold/Dam Bar and Metal protrusion.

Dim.	Inches			Millimeters		
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	0.390	0.392	0.394	9.91	9.96	10.01
В	0.383	0.385	0.387	9.73	9.78	9.83
С	0.808	0.810	0.812	20.52	20.57	20.62
D	0.808	0.810	0.812	20.52	20.57	20.62
Е	0.007	0.010	0.013	0.17	0.25	0.33
F	0.148	0.150	0.152	3.76	3.81	3.86
G	0.060	0.062	0.064	1.52	1.57	1.62
Н	0.624	0.628	0.632	15.86	15.96	16.06
J	0.148	0.150	0.152	3.76	3.81	3.86
K	-	0.325	-	-	8.25	-
L	-	0.764	-	-	19.40	-
М	-	10°±1°	-	-	10°±1°	-
N	-	7°±1°	-	-	7°±1°	-
е	-	0.350	-	-	8.89	-

GTRB097152NCV1A

Rev. V

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.