

ENGLA00267A

Rev. V1

Features

- Operation Across 6 13 GHz
- Small Signal Gain: 8.5 dB @ 13 GHz
- Noise Figure:

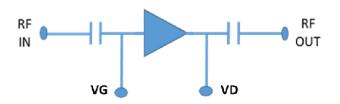
1.7 - 3.9 dB, <2 dB from 11 - 13 GHz

- I/O Return Loss: 12.5 dB or better
- Die Size:

2.30 x 2.12 mm 4.88 sq. mm 0.091 x 0.083 inch

RoHS* Compliant

Applications


- Radar / driver amplifier functions; SATCOM
- Radio receivers / transmitters when biased for linearity
- Test & Measurement Systems

Description

The ENGLA00267A is a wideband pHEMT two-stage 9 dB gain low noise distributed amplifier, operating across 6 to 13 GHz. The design is 50-ohm matched. The amplifier has a typical noise figure of 1.7 - 3.9 dB across 6 to 13 GHz; noise figure is <2 dB from 11 to 13 GHz at room temperature. The amplifier has gold backside metallization and is designed for gold-tin eutectic or high thermal conductivity silver epoxy attachment.

Functional Block Diagram

MMIC RF ports are DC-blocked. RF ports designed for 50 ohms.

Ordering Information

Part Number	Package		
ENGLA00267A	Die		

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

ENGLA00267A

Rev. V1

Electrical Specifications:

Freq. = 6 - 13 $\dot{G}Hz$, T_A = +25°C, VD = 5.0 V; IDS = 30 mA (Iq), $VG \sim$ +0.35 V

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Small Signal Gain	_	dB	8	9	_
Noise Figure	_	dB	_	1.7 - 3.9	4.5
Input Return Loss	_	dB	10	14	_
Output Return Loss	_	dB	10	12.5	_
Output IP3	8 - 12 GHz	dBm	_	28	_
Supply Current	_	mA	_	30	80
Thermal Resistance	includes 25-µm thick AuSn solder mount	°C/W	_	200	_

Recommended Operating Conditions

Parameter	Min.	Тур.	Max.	Units
Drain Voltage	_	5	6	V
Gate Voltage	_	0.35, 0.48	1.0	V
Quiescent Drain Current	_	30	80	mA

Handling Procedures

Please observe the following precautions to avoid damage:

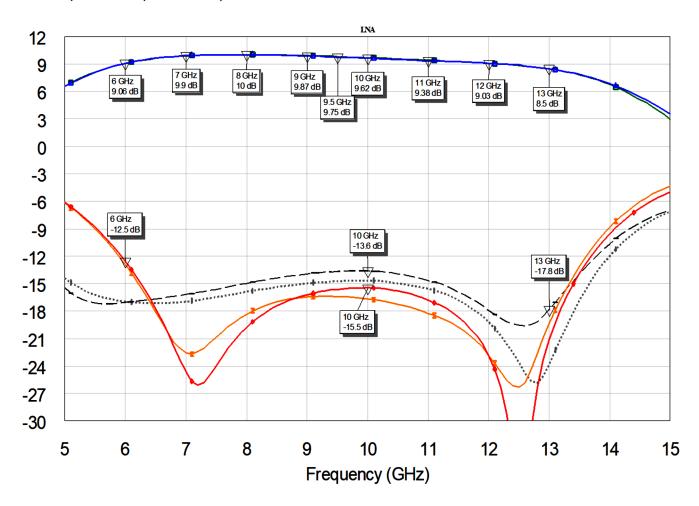
Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Absolute Maximum Ratings^{1,2}

Parameter	Absolute Maximum		
Drain Voltage	6 V		
Gate Voltage	1.2 V		
RF Input Power	20 dBm		
Operating Temperature	-55°C to +100°C		
Storage Temperature	-65°C to +150°C		

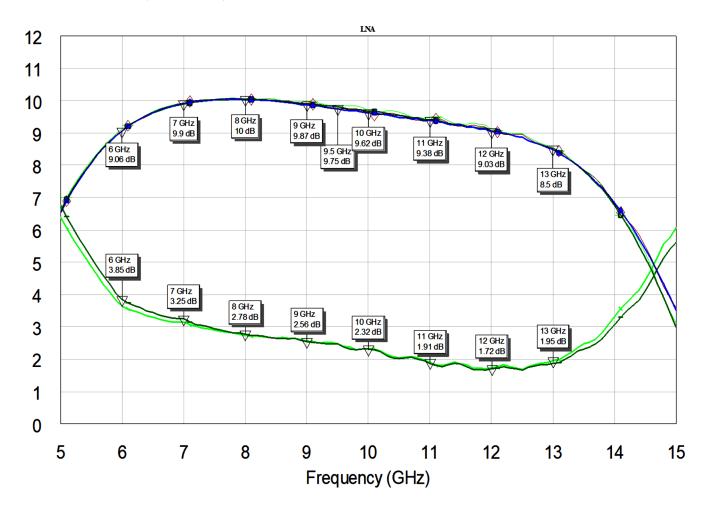
^{1.} Exceeding any one or combination of these limits may cause permanent damage to this device.


MACOM does not recommend sustained operation near these survivability limits.

ENGLA00267A Rev. V1

Measured RF Data: With Wirebonds and External Microstrip Flares

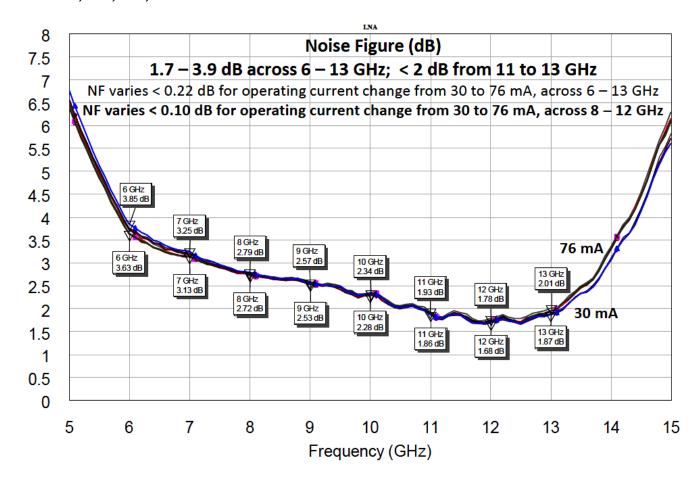
Small Signal Gain and In / Out Return Loss (for two ENGLA00267A amplifiers): $T = 25 \,^{\circ}\text{C}$, $VD = 5.0 \,\text{V}$, $IQ = 30 \,\text{mA}$, $VG = 0.35 \,\text{V}$



ENGLA00267A Rev. V1

Measured RF Data: With Wirebonds and External Microstrip Flares

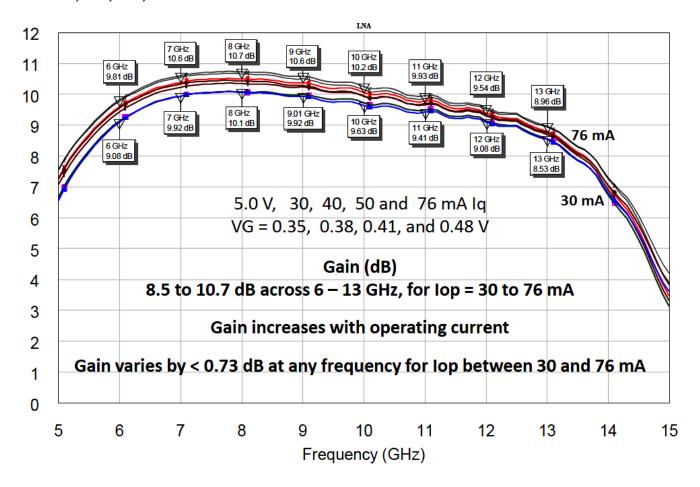
Small Signal Gain and Noise Figure (for two ENGLA00267A amplifiers): $T = 25 \, ^{\circ}\text{C}$, $VD = 5.0 \, \text{V}$, $IQ = 30 \, \text{mA}$, $VG = 0.35 \, \text{V}$



ENGLA00267A Rev. V1

Measured RF Data: With Wirebonds and External Microstrip Flares

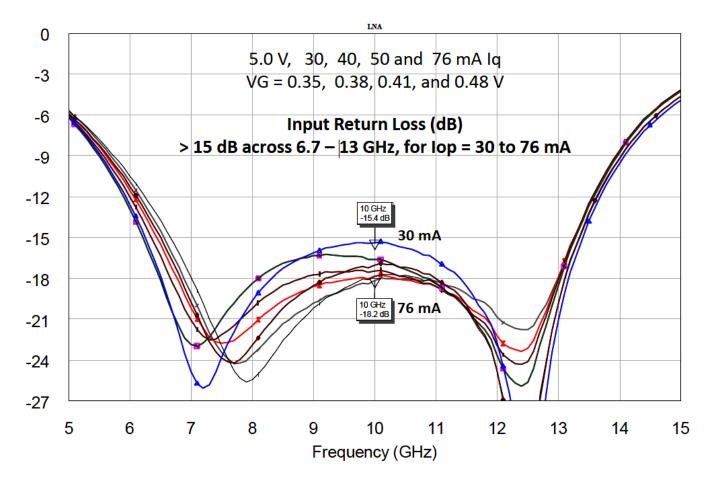
Noise Figure (for two ENGLA00267A amplifiers):



ENGLA00267A Rev. V1

Measured RF Data: With Wirebonds and External Microstrip Flares

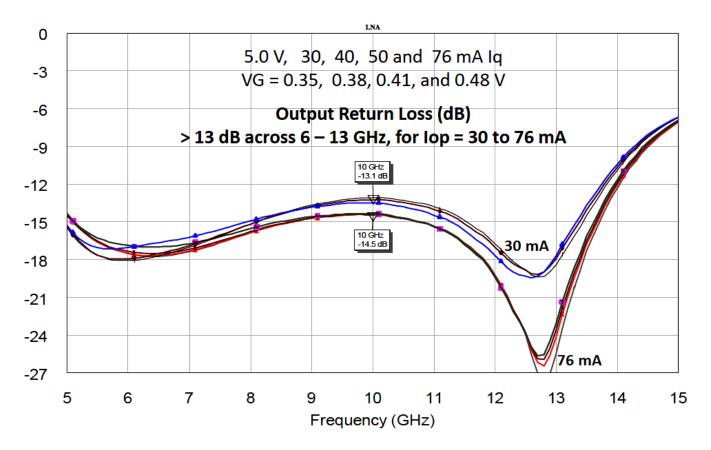
Small Signal Gain (for two ENGLA00267A amplifiers):



ENGLA00267A Rev. V1

Measured RF Data: With Wirebonds and External Microstrip Flares

Input Return Loss (for two ENGLA00267A amplifiers):



ENGLA00267A Rev. V1

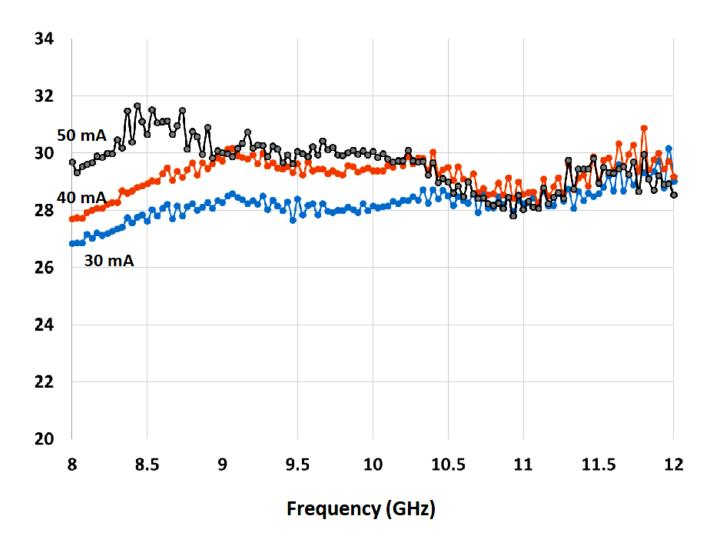
Measured RF Data: With Wirebonds and External Microstrip Flares

Output Return Loss (for two ENGLA00267A amplifiers):

ENGLA00267A Rev. V1

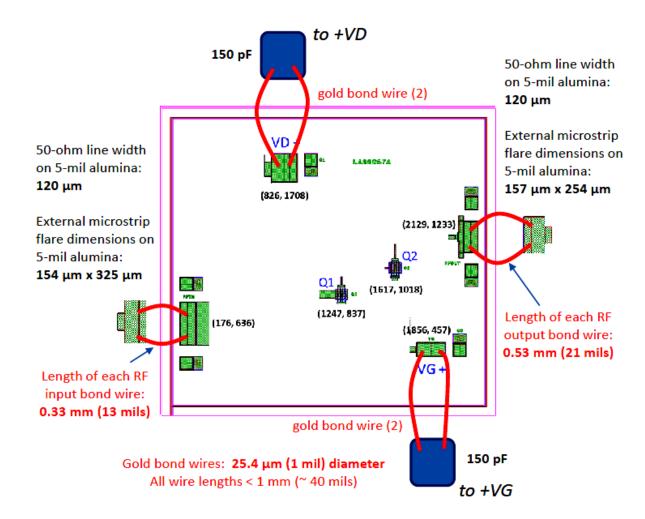
Measured RF Data: With Wirebonds and External Microstrip Flares

S-Parameters: T_A = +25°C, VD = 5.0 V; IDS = 30 mA (Iq), $VG \sim$ +0.35 V


	S	11	,	S21	S12		S22	
Freq	Mag	(angle)	Mag	(angle)	Mag	(angle)	Mag	(angle)
(GHZ)	(DB)	(deg)	(DB)	(deg)	(DB)	(deg)	(DB)	(deg)
5	-6.13	114.96	6.53	140.10	-26.11	123.09	-15.45	70.16
5.5	-8.84	97.33	8.08	114.76	-24.15	94.64	-17.15	17.98
6	-12.54	83.30	9.06	89.78	-22.74	68.47	-17.07	-22.14
6.5	-17.72	77.23	9.62	65.86	-21.71	44.54	-16.65	-48.56
7	-24.64	98.56	9.91	43.22	-20.88	22.63	-16.18	-66.16
7.5	-24.01	154.87	10.02	21.79	-20.22	2.29	-15.62	-79.71
8	-19.77	166.21	10.03	1.32	-19.65	-16.73	-14.96	- 9 2.17
8.5	-17.42	162.93	9.98	-18.34	-19.11	-34.80	-14.38	-104.74
9	-16.21	156.83	9.87	-37.39	-18.61	-52.06	-13.93	-117.57
9.5	-15.63	149.86	9.75	-56.07	-18.12	-68.74	-13.69	-131.07
10	-15.45	142.58	9.62	-74.39	-17.64	-85.19	-13.60	-145.24
10.5	-15.81	134.13	9.48	-9 2.70	-17.13	-101.26	-13.95	-159.06
11	-16.84	125.43	9.38	-111.05	-16.53	-117.85	-14.66	-172.00
11.5	-18.69	115.79	9.24	-129.53	-16.06	-134.74	-15.93	177.11
12	-22.85	103.49	9.03	-148.78	-15.54	-151.81	-17.90	172.33
12.5	-42.35	56.62	8.87	-168.95	-15.02	-170.21	-19.54	-176.95
13	-21.09	-94.24	8.48	170.08	-14.66	170.80	-17.81	-157.77
13.5	-13.86	-112.12	7.84	147.96	-14.47	150.21	-13.94	-159.14
14	-9.55	-129.51	6.83	125.86	-14.67	129.02	-10.66	-173.51
14.5	-6.74	-147.25	5.40	103.90	-15.09	108.13	-8.34	165.05
15	-4.96	-163.97	3.51	84.17	-16.01	87.63	-6.95	141.71

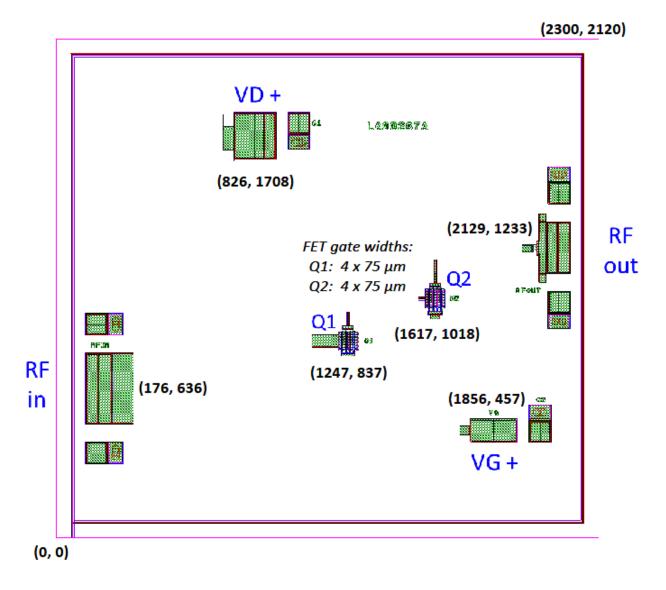
ENGLA00267A Rev. V1

Measured RF Data: With Wirebonds and External Microstrip Flares


Output Third-Order Intercept Point: T = 25 °C, VD = 5.0 V, IQ = 30, 40, 50 mA

ENGLA00267A Rev. V1

MMIC Assembly Drawing: External Microstrip Flares, 150 pF Bypass Capacitors, & Bond Wires


Assembly Comments

- 1. If mounting the MMIC using either AuSn solder, or high thermal conductivity silver epoxy, the regions underneath the FET heat sources should be void free. Even small voids underneath the FETs could cause FET channel temperature to significantly increase.
- 2. RF ports are DC blocked.
- 3. At X-band, RF I/O port impedances are near 50 ohms.

ENGLA00267A Rev. V1

Outline Drawing – MMIC Dimensions: 230 mm x 2.12 mm FET (heat source) and bond pad center coordinates shown (µm)

Notes:

- 1. All dimensions are given in micrometers (µm) unless specified. Typ. tolerance: +25 µm / -25 µm.
- 2. GaAs thickness (excluding front side/back side metallization): 75 μm. Typical tolerance +/- 8 μm.
- 3. Backside metallization is gold.
- 4. Bond pad metallization is gold.

ENGLA00267A

Rev. V

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.