

ENGDA00160

Rev. V1

Features

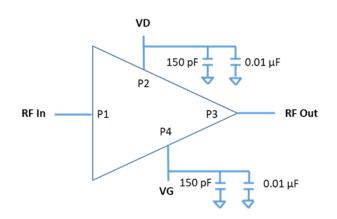
- Wideband Performance
- · High Linearity:

7 dBm IIP3 @ 6 V;9 dBm IIP3 @ 8 V

- Positive Gain Slope: 11 dB
- Input/Output Return Loss: 14 dB
- Noise Figure: <3.5 dB, 4 18 GHz
- 3 V & 10 V Bias Operation
- Die Size:

2.93 x 2.00 x 0.1 mm 0.115 x 0.079 x 0.004 inch

RoHS* Compliant


Applications

- Military EW & SIGINT
- · Receiver or Transmitter
- Telecom Infrastructure
- Space Hybrids
- Test & Measurement Systems

Description

The ENGDA00160 is a wideband, linear GaAs MMIC distributed amplifier die which operates from 1 to 19 GHz. The design is 50 ohm matched and does not require external bias coil inductors. The amplifier delivers 11 dB gain with >1 dB positive gain slope across the band over a wide drain voltage range (3 V to 10 V). Noise figure is <3.5 dB across 4 - 18 GHz for bias voltages between 4 and 8 V. The amplifier has gold backside metallization and is designed to be silver epoxy attached. The RF interconnects are designed to account for wire bonds and external microstrip flares for optimal integrated return loss. No additional ground interconnects are required.

Functional Block Diagram

Ordering Information

Part Number	Package	
ENGDA00160	Die	

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

ENGDA00160

Rev. V1

Electrical Specifications: Freq. = 1 - 19 GHz, $T_A = +25^{\circ}$ C, $V_D = 8$ V, 40 mA, $Z_0 = 50$ Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Gain	_	dB	9	11	+ Slope
Noise Figure	4 - 18 GHz	dB	_	<3.5	_
Input Return Loss	_	dB	13	15	_
Output Return Loss	_	dB	13	15	_
Output P1dB	_	dBm	7	10	_
Output IP3	_	dBm	16	18	_
Supply Current	_	mA	30	30 - 80	100
Thermal Resistance	_	°C/W	_	180	_

Recommended Operating Conditions

Parameter	Min.	Тур.	Max.	Units
Drain Voltage	3	8	9	V
Gate Voltage	-0.2	-0.5	-0.7	V
Drain Current	30	70	100	mA

Handling Procedures

Please observe the following precautions to avoid damage:

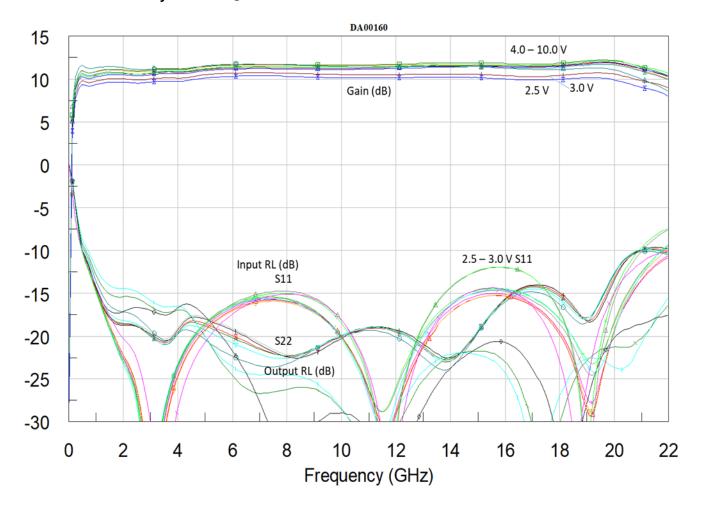
Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Absolute Maximum Ratings^{1,2}

Parameter	Absolute Maximum		
Drain Voltage	11 V		
Gate Voltage	-3 V		
RF Input Power	24 dBm		
Junction Temperature	+160°C		
Operating Temperature	-55°C to +100°C		
Storage Temperature	-65°C to +150°C		

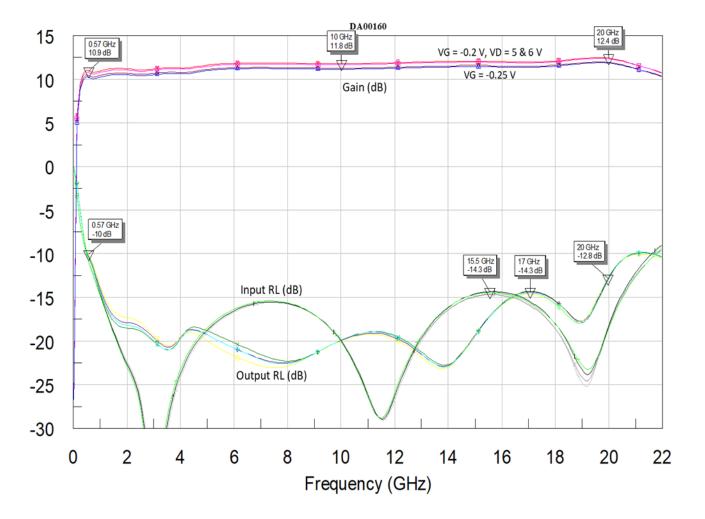
^{1.} Exceeding any one or combination of these limits may cause permanent damage to this device.


MACOM does not recommend sustained operation near these survivability limits.

ENGDA00160 Rev. V1

Measured RF Data: No Wirebonds & No External Microstrip Flares

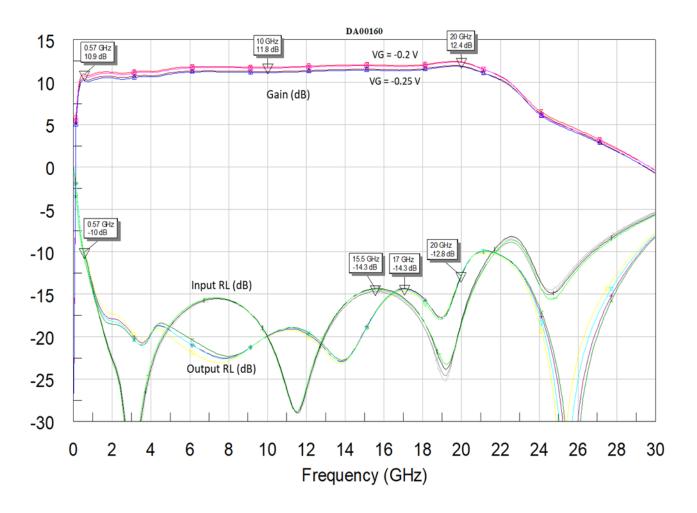
Gain and In / Out Return Loss: V_D = 2.5,3,4,5,6,7,8,9 & 10 V; V_G = -0.25 V Measured Gain varies by 1 dB for V_D bias of 4 to 10 V



ENGDA00160 Rev. V1

Measured RF Data: No Wirebonds & No External Microstrip Flares

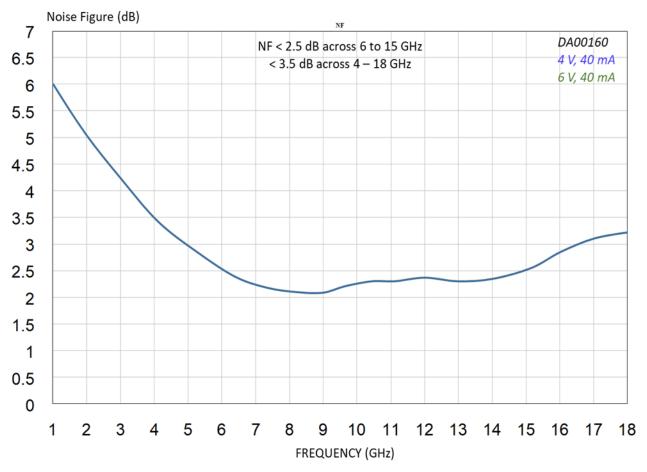
Gain and In / Out Return Loss: $V_D = 5 \& 6 V$; $V_G = -0.25 V \& -0.20 V$



ENGDA00160 Rev. V1

Measured RF Data: No Wirebonds & No External Microstrip Flares

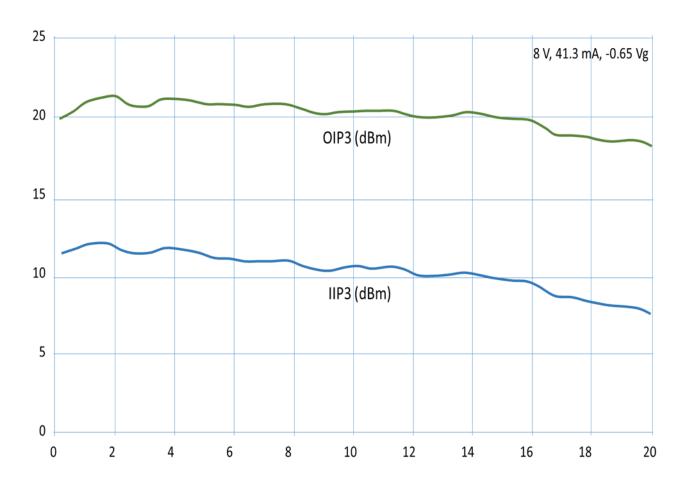
Gain and In / Out Return Loss: $V_D = 5 \& 6 V$; $V_G = -0.25 V \& -0.20 V$



ENGDA00160 Rev. V1

Measured RF Data with Wirebonds & External Microstrip Flares

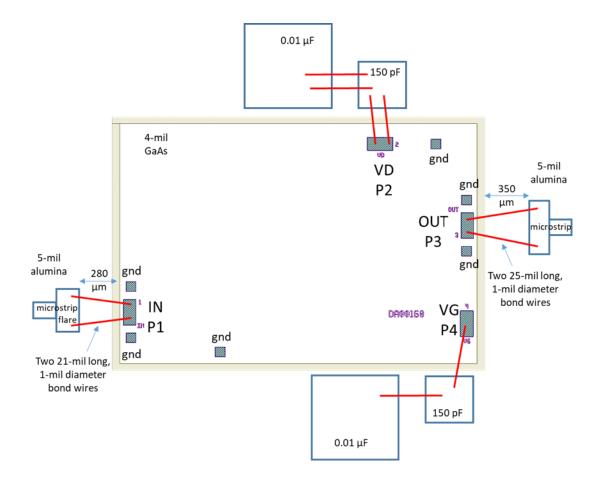
Noise Figure: V_D = 4 - 8 V, I_D 40 mA; Noise figure varies by only ± 0.1 dB for drain voltages between 4 and 8 V; at 3 V bias, noise figure increases slightly in Ku-band



ENGDA00160 Rev. V1

Measured RF Data with Wirebonds & External Microstrip Flares

IIP3 > 8 dBm to 20 GHz (OIP3 > 18 dBm); 8 V, 41.3 mA bias; 25 °C (OIP3 increases with current) IIP3 > 10 dBm to 15 GHz (OIP3 > 20 dBm)


ENGDA00160

Rev. V1

External I/O Microstrip Flare Dimensions (on 5-mil Alumina) and I/O Bond Wire Inductances for Optimum Insertion and Return Loss Performance

S-parameters can be supplied at DIE level such that optimal flare dimensions can be made for the substrate connection medium used (if different from 5-mil Alumina).

Pad Flare Dimension	Flare Width x-dim, (µm)	Flare Length y-dim, (µm)	Wire Inductance	Wire Length (μm)	# of Wires
RF Input	190	346	0.25	533	2
RF Output	137	437	0.28	635	2

Notes

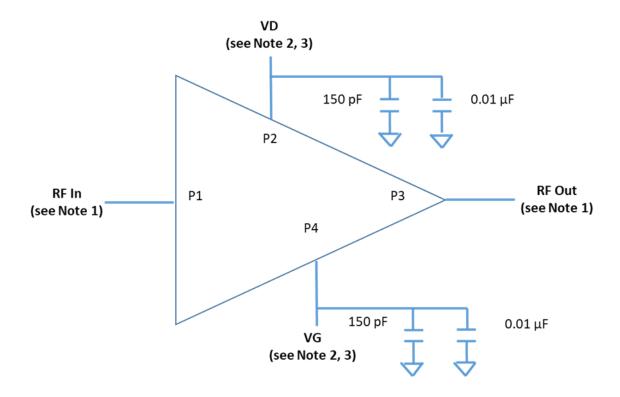
- To achieve bond wire inductance noted, bond the number of wires shown in parallel from each external flare to each associated MMIC RF bond pad as shown above.
- 2. Gold Wire Details:

Diameter: 25.4 µm (1 mil)

Spacing: 4 mils (~ 100 µm) typical

Height above Ground: 8 mils (~ 200 μm) typical (wedge bonds)

3. Wire Length is total length if the wire were made perfectly straight.

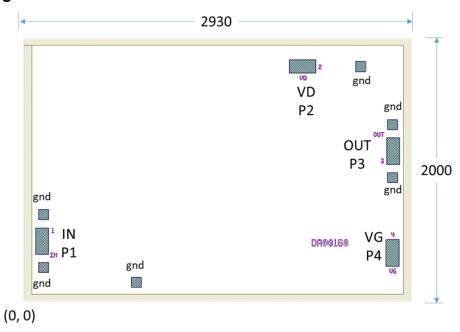

ENGDA00160

Rev. V1

Assembly Guidelines

The backside metallization is RF/DC ground. Attachment should be accomplished with electrically and thermally conductive epoxy only. Eutectic Attach is not recommended though product can be made that supports. This device supports high frequency performance. Care should be made to following the wirebond dimensions as shown in the flare diagram.

Application Circuit and Turn-on Procedure



- 1. Internal blocking capacitors on RF in/out ports (P1 and P2).
- 2. Gate Voltage (V_G) must be applied prior to Drain Voltage (V_D)
- 3. Drain Voltage (V_D) must be removed prior to Gate Voltage (V_G).
- 4. Performance is optimized with V_D set in the 4 8 V range.

ENGDA00160 Rev. V1

Outline Drawing

Pad Dimensions

Pad Dimension	Length x-dim, (µm)	Width y-dim, (µm)	Length x-dim, (mils)	Width y-dim, (mils)
RF Input	100	200	3.94	7.87
RF Output	100	200	3.94	7.87
Drain Bias	200	100	7.87	3.94
Gate Bias	100	200	3.94	7.87

Bond Pad Center Point Locations

Pad Location	x-dim, (µm)	y-dim, (µm)	x-dim, (mils)	y-dim, (mils)
RF Input	136	462	5.35	18.19
RF Output	2791	1142	109.88	44.96
Drain Bias	2107	1718	82.95	70.12
Gate Bias	2787	372	109.72	14.65

Notes:

All dimensions are given in both µm and mils.

Substrate thickness: 100 µm (0.004").

Backside metallization is gold.

Bond pad metallization is gold.

ENGDA00160

Rev. V1

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.