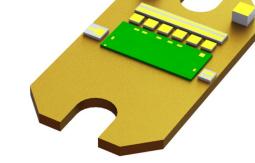


**ENGAD00071** 

Rev. V1

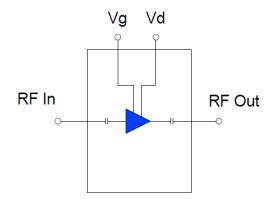
#### **Features**


- 2 to 18 GHz Band Coverage
- Saturated Output Power: >2.5 W
- Average PAE @ P<sub>SAT</sub>: 31%
- Solid State GaN MMIC
- Microstrip Input/Output Interface
- Dual Bias Supply Required
- Size: 0.25" x 0.45" x 0.055"
- RoHS\* Compliant

#### **Applications**

- Military & Commercial SATCOM
- Electronic Warfare Circuits
- Radar Circuits
- Transmit Circuits
- Telecom Infrastructure
- · Test & Measurement Systems

#### **Description**


The ENGAD00071 is a carrier based Solid State Power Amplifier (SSPA) operating across 2 to 18 GHz with a saturated output power (Psat) of greater than 2.5 W and average 31% power added efficiency (PAE). The ENGAD00071 uses microstrip interfaces for the RF input and output ports. The ENGAD00071 operates at 18 V drain voltage with a quiescent bias of 0.31 A. Available in bare die MMIC upon request. MMIC provides >3 Watts output power and average 33% PAE.



Carrier Based 2.5 W SSPA

#### **Ordering Information**

| Part Number | Package |
|-------------|---------|
| ENGAD00071  | bulk    |



<sup>\*</sup> Restrictions on Hazardous Substances, compliant to current RoHS EU directive.



ENGAD00071 Rev. V1

### Electrical Specifications: Freq. = 2 - 18 GHz, $T_A$ = +25°C, V = 18 V

| Parameter              | Test Conditions                  | Units | Min. | Тур.         | Max. |
|------------------------|----------------------------------|-------|------|--------------|------|
| Saturated Power        | _                                | W     | 2.0  | 2.5          | _    |
| PAE @ P <sub>SAT</sub> | average                          | %     | _    | 31           | _    |
| Small Signal Gain      | _                                | dB    | 26   | 30           | _    |
| Input Return Loss      | _                                | dB    | 14   | 16           | _    |
| Output Return Loss     | _                                | dB    | 14   | 16           | _    |
| DC Current             | Small Signal<br>P <sub>SAT</sub> | Α     | _    | 0.31<br>0.50 | _    |

## **Recommended Operating Conditions**

| Parameter                               | Units | Min. | Тур. | Max. |
|-----------------------------------------|-------|------|------|------|
| Drain Voltage                           | V     | 16   | 18   | 20   |
| Gate Voltage                            | V     | -1.1 | -1.5 | -1.8 |
| RF Input Power (for 2.5 W Output Power) | dBm   | _    | 13   | _    |

## Absolute Maximum Ratings<sup>1,2</sup>

| Parameter             | Absolute Maximum |
|-----------------------|------------------|
| Drain Voltage         | +22 V            |
| Gate Voltage          | -6 V             |
| RF Input Power        | 18 dBm           |
| Operating Temperature | -40°C to +85°C   |
| Storage Temperature   | -65°C to +125°C  |

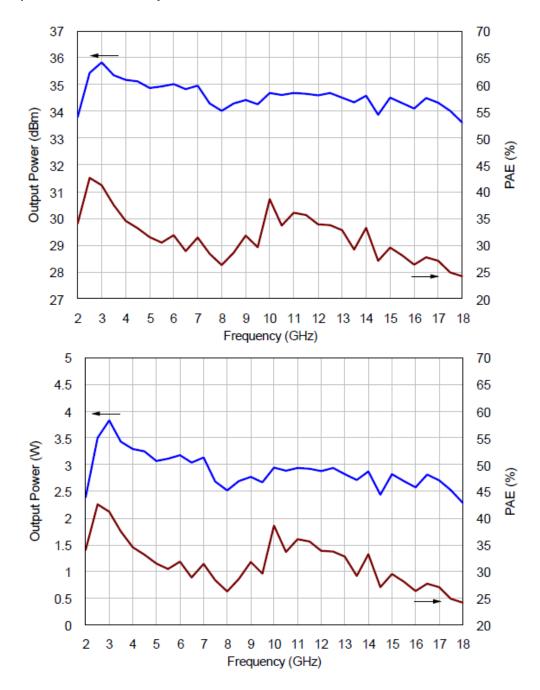
<sup>1.</sup> Exceeding any one or combination of these limits may cause permanent damage to this device.

## **Handling Procedures**

Please observe the following precautions to avoid damage:

#### **Static Sensitivity**

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.


MACOM does not recommend sustained operation near these survivability limits.



ENGAD00071 Rev. V1

## **Typical Performance**

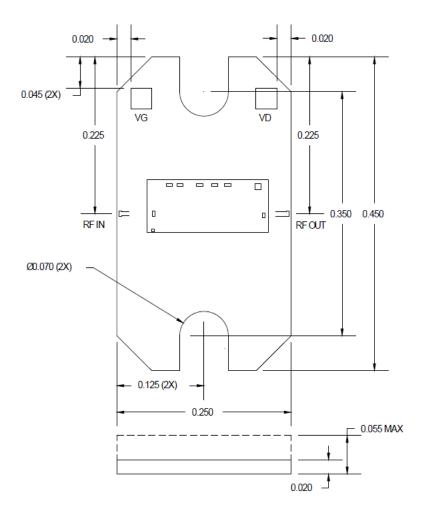
Saturated Output Power and Efficiency:  $T_A = 25$ °C,  $V_D = +18$  V,  $V_G = -1.5$  V, Id = 0.5 A,  $P_{IN} = 13$  dBm





ENGAD00071 Rev. V1

## **Typical Performance**


Small Signal Gain, and Return Loss:  $T_A$  = 25°C,  $V_D$  = +18 V,  $V_G$  = -1.5 V, Id = 0.31 A,  $P_{IN}$  = -30 dBm





ENGAD00071 Rev. V1

## **Outline Drawing**



| Pad        | Dimension   |
|------------|-------------|
| RF Input   | 4 x 8 mil   |
| RF Output  | 4 x 8 mil   |
| Drain Bias | 30 x 30 mil |
| Gate Bias  | 30 x 30 mil |

#### Notes:

- 1. All dimensions are given in inches unless otherwise specified. Typical tolerance: +/-0.005.
- 2. RF In, RF Out, Vd and Vg pad metallization is gold suitable for wire bonding or ribbon welding.
- 3. Add 4.7 µF to 10 µF capacitor to gate and drain lines if power supply capacitors are greater than 4 inches away at the next assembly.
- 4. Apply Vg prior to Vd.
- 5. Open carrier configuration. Use proper handling and packaging due to exposed die and wire bonds.



**ENGAD00071** 

Rev. V1

#### MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.