RF Power MOSFET Transistor
60 W, 2 - 175 MHz, 28 V

Features
- N-Channel enhancement mode device
- DMOS structure
- Lower capacitances for broadband operation
- High saturated output power
- Lower noise figure than bipolar devices
- RoHS Compliant

ABSOLUTE MAXIMUM RATINGS AT 25°C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Rating</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Voltage</td>
<td>V_DS</td>
<td>65</td>
<td>V</td>
</tr>
<tr>
<td>Gate-Source Voltage</td>
<td>V_GS</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>Drain-Source Current</td>
<td>I_DS</td>
<td>12</td>
<td>A</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>P_D</td>
<td>159</td>
<td>W</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>T_J</td>
<td>200</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_STG</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Thermal Resistance</td>
<td>θ_JC</td>
<td>1.1</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

TYPICAL DEVICE IMPEDANCE

<table>
<thead>
<tr>
<th>F (MHz)</th>
<th>Z_IN (Ω)</th>
<th>Z_LOAD (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>9.0 - j4.0</td>
<td>6.0 + j0.0</td>
</tr>
<tr>
<td>50</td>
<td>10.0 - j6.5</td>
<td>5.0 + j2.0</td>
</tr>
<tr>
<td>100</td>
<td>6.0 - j5.5</td>
<td>4.0 + j3.0</td>
</tr>
<tr>
<td>200</td>
<td>1.1 - j3.0</td>
<td>2.0 + j1.9</td>
</tr>
</tbody>
</table>

Z_IN is the series equivalent input impedance of the device from gate to source.

Z_LOAD is the optimum series equivalent load impedance as measured from drain to ground.

ELECTRICAL CHARACTERISTICS AT 25°C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Breakdown Voltage</td>
<td>BV_DSS</td>
<td>65</td>
<td>-</td>
<td>V</td>
<td>V_GS = 0.0 V, I_GS = 15.0 mA</td>
</tr>
<tr>
<td>Drain-Source Leakage Current</td>
<td>I_GSS</td>
<td>-</td>
<td>3.0</td>
<td>mA</td>
<td>V_GS = 28.0 V, V_GS = 0.0 V</td>
</tr>
<tr>
<td>Gate-Source Leakage Current</td>
<td>I_GSS</td>
<td>-</td>
<td>3.0</td>
<td>μA</td>
<td>V_GS = 20.0 V, V_GS = 0.0 V</td>
</tr>
<tr>
<td>Gate Threshold Voltage</td>
<td>V_GS(TH)</td>
<td>2.0</td>
<td>6.0</td>
<td>V</td>
<td>V_DDS = 10.0 V, I_GS = 300 mA</td>
</tr>
<tr>
<td>Forward Transconductance</td>
<td>G_M</td>
<td>1.5</td>
<td>-</td>
<td>S</td>
<td>V_GS = 10.0 V, I_GS = 3.0 A, Δ V_GS = 1.0V, 80 μs Pulse</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>C_RS</td>
<td>-</td>
<td>135</td>
<td>pF</td>
<td>V_GS = 28.0 V, F = 1.0 MHz</td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>C_OSS</td>
<td>-</td>
<td>120</td>
<td>pF</td>
<td>V_GS = 28.0 V, F = 1.0 MHz</td>
</tr>
<tr>
<td>Reverse Capacitance</td>
<td>C_RSS</td>
<td>-</td>
<td>24</td>
<td>pF</td>
<td>V_GS = 28.0 V, F = 1.0 MHz</td>
</tr>
<tr>
<td>Power Gain</td>
<td>G_P</td>
<td>13</td>
<td>-</td>
<td>dB</td>
<td>V_DDS = 28.0 V, I_GS = 300 mA, P_OUT = 60 W F =175 MHz</td>
</tr>
<tr>
<td>Drain Efficiency</td>
<td>η_D</td>
<td>60</td>
<td>-</td>
<td>%</td>
<td>V_DDS = 28.0 V, I_GS = 300 mA, P_OUT = 60 W F =175 MHz</td>
</tr>
<tr>
<td>Load Mismatch Tolerance</td>
<td>VSWR-T</td>
<td>-</td>
<td>30:1</td>
<td>-</td>
<td>V_DDS = 28.0 V, I_GS = 300 mA, P_OUT = 60 W F =175 MHz</td>
</tr>
</tbody>
</table>
Typical Broadband Performance Curves

GAIN vs FREQUENCY
\[V_{DD}=28\ V \ I_{DO}=300\ mA \ P_{OUT}=60\ W\]

EFFICIENCY vs FREQUENCY
\[V_{DD}=28\ V \ I_{DO}=300\ mA \ P_{OUT}=60\ W\]

POWER OUTPUT vs POWER INPUT
\[V_{DD}=28\ V \ I_{DO}=300\ mA\]
RF Power MOSFET Transistor
60 W, 2 - 175 MHz, 28 V

TEST FIXTURE SCHEMATIC

L1: 7 TURNS OF NO. 14 AWG COPPER WIRE ON 6.25" L2: NO. 14 AWG COPPER WIRE THRU FERRITE BEAD
BOARD TYPE: FR-4 1.062" THICK 1 OZ COPPER BOTH SIDES

TEST FIXTURE ASSEMBLY

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:
https://www.macom.com/support