RF Power MOSFET Transistor

120 W, 2 - 175 MHz, 28 V

Features
- N-Channel enhancement mode device
- DMOS structure
- Lower capacitances for broadband operation
- High saturated output power
- Lower noise figure than bipolar devices
- RoHS Compliant

ABSOLUTE MAXIMUM RATINGS AT 25°C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Rating</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Voltage</td>
<td>V_{DS}</td>
<td>65</td>
<td>V</td>
</tr>
<tr>
<td>Gate-Source Voltage</td>
<td>V_{GS}</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>Drain-Source Current</td>
<td>I_{DS}</td>
<td>24 A</td>
<td></td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>P_{D}</td>
<td>269 W</td>
<td></td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>T_{J}</td>
<td>200 °C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{STG}</td>
<td>-55 to +150 °C</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance</td>
<td>θ_{JC}</td>
<td>0.65 °C/W</td>
<td></td>
</tr>
</tbody>
</table>

TYPICAL DEVICE IMPEDANCE

<table>
<thead>
<tr>
<th>F (MHz)</th>
<th>Z_{in} (Ω)</th>
<th>Z_{LOAD} (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>4.0 - j8.0</td>
<td>3.4 + j2.4</td>
</tr>
<tr>
<td>50</td>
<td>1.0 - j2.5</td>
<td>2.2 + j1.3</td>
</tr>
<tr>
<td>100</td>
<td>1.0 - j0.5</td>
<td>2.2 + j0.0</td>
</tr>
</tbody>
</table>

\(V_{DD} = 28 V, I_{DQ} = 600 mA, P_{OUT} = 120 W\)

\(Z_{in}\) is the series equivalent input impedance of the device from gate to source.

\(Z_{LOAD}\) is the optimum series equivalent load impedance as measured from drain to ground.

ELECTRICAL CHARACTERISTICS AT 25°C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Breakdown Voltage</td>
<td>B_{VDS}</td>
<td>65</td>
<td>-</td>
<td>V</td>
<td>(V_{GS} = 0.0 \text{ V}, I_{DS} = 3.0 \text{ mA})</td>
</tr>
<tr>
<td>Drain-Source Leakage Current</td>
<td>I_{IDS}</td>
<td>-</td>
<td>6.0</td>
<td>mA</td>
<td>(V_{GS} = 28.0 \text{ V}, V_{GS} = 0.0 \text{ V})</td>
</tr>
<tr>
<td>Gate-Source Leakage Current</td>
<td>I_{GSS}</td>
<td>-</td>
<td>6.0</td>
<td>μA</td>
<td>(V_{GS} = 20.0 \text{ V}, V_{DS} = 0.0 \text{ V})</td>
</tr>
<tr>
<td>Gate Threshold Voltage</td>
<td>V_{GTHS}</td>
<td>2.0</td>
<td>6.0</td>
<td>V</td>
<td>(V_{GS} = 10.0 \text{ V}, I_{DS} = 600.0 \text{ mA})</td>
</tr>
<tr>
<td>Forward Transconductance</td>
<td>G_{M}</td>
<td>3.0</td>
<td>-</td>
<td>S</td>
<td>(V_{DS} = 10.0 \text{ V}, I_{DS} = 6000.0 \text{ mA}), (\Delta V_{GS} = 1.0 \text{ V}), 80 μs Pulse</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>C_{BS}</td>
<td>-</td>
<td>270</td>
<td>pF</td>
<td>(V_{DS} = 28.0 \text{ V}, F = 1.0 \text{ MHz})</td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>C_{DFS}</td>
<td>-</td>
<td>240</td>
<td>pF</td>
<td>(V_{DS} = 28.0 \text{ V}, F = 1.0 \text{ MHz})</td>
</tr>
<tr>
<td>Reverse Capacitance</td>
<td>C_{RSS}</td>
<td>-</td>
<td>48</td>
<td>pF</td>
<td>(V_{DS} = 28.0 \text{ V}, F = 1.0 \text{ MHz})</td>
</tr>
<tr>
<td>Power Gain</td>
<td>G_{P}</td>
<td>13</td>
<td>-</td>
<td>dB</td>
<td>(V_{DD} = 28.0 \text{ V}, I_{DQ} = 600 \text{ mA}, P_{OUT} = 120.0 \text{ W}), F = 175 MHz</td>
</tr>
<tr>
<td>Drain Efficiency</td>
<td>η_{D}</td>
<td>60</td>
<td>-</td>
<td>%</td>
<td>(V_{DD} = 28.0 \text{ V}, I_{DQ} = 600 \text{ mA}, P_{OUT} = 120.0 \text{ W}), F = 175 MHz</td>
</tr>
<tr>
<td>Load Mismatch Tolerance</td>
<td>VSWR-T</td>
<td>-</td>
<td>30:1</td>
<td>-</td>
<td>(V_{DD} = 28.0 \text{ V}, I_{DQ} = 600 \text{ mA}, P_{OUT} = 120.0 \text{ W}), F = 175 MHz</td>
</tr>
</tbody>
</table>

For further information and support please visit: https://www.macom.com/support
RF Power MOSFET Transistor
120 W, 2 - 175 MHz, 28 V

Typical Broadband Performance Curves

GAIN vs FREQUENCY
$V_{DD}=28$ V $I_{DQ}=600$ mA $P_{OUT}=120$ W

EFFICIENCY vs FREQUENCY
$V_{DD}=28$ V $I_{DQ}=600$ mA $P_{OUT}=120$ W

POWER OUTPUT vs POWER INPUT
$V_{DD}=28$ V $I_{DQ}=50$ mA

POWER OUTPUT vs SUPPLY VOLTAGE
$F=175$ MHz $I_{DQ}=600$ mA $P_{IN}=3.0$ W
DU28120T

RF Power MOSFET Transistor
120 W, 2 - 175 MHz, 28 V

TEST FIXTURE SCHEMATIC

VGS J3
VDS J4
R2
C10
C11
L4
C9
C12
L3
C7
C6
C5
L2
Q1
C8
C4
RF IN
J1
C1
C3
C2
R1
Q2
RF OUT
J2

PARTS LIST
C1,C6 TRIMMER CAPACITOR 5-80pF
C2,C5 CAPACITOR 50pF
C3 TRIMMER CAPACITOR 4-40pF
C4,C11 MONOLITHIC CIRCUIT CAPACITOR 0.01uF
C7 TRIMMER CAPACITOR 9-100pF
C8,C9 CAPACITOR 300pF
C10 CAPACITOR 1000pF
C12 ELECTROLYTIC CAPACITOR 50uF 50 VOLT
L1,L2 NO. 12 AWG COPPER WIRE X 0.87" (LODD 0.4")
L3,L4 8 TURNS OF NO. 16 AWG ENAMEL WIRE ON ø0.25", CLOSE WOUND
R1,R2 RESISTOR 2.7K OHMS 0.25 WATT
Q1 DU28120T
BOARD FR4 0.062"
DU28120T

RF Power MOSFET Transistor
120 W, 2 - 175 MHz, 28 V

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

For further information and support please visit:
https://www.macom.com/support